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Abstract 

A class of two-component,one-dimensional, reaction-diffusion systems 
of the type usually found in Ecology are analysed in order to establish the 
qualitative behaviour of solutions. It is shown that for diffusivities in the 
form D j  = d j  + bjcos(wt + q5), relationships can be derived from which 
amplitude destabilisation can be assessed depending on the wavenumber k 
and t,he variable diffusion coefficients, specially the frequency u. Therefore 
time-dependent diffusivities can control the Turing instability mechanism. 
The analysis is performed using Floquet's Theory. Kumerical simulations 
for various kinetics are presented, and bifurcation diagrams in the plane 
(k, w )  are obtained. 

AMS CLASSIFICATIONS: 35K57 

1 Introduction 

In many ecological and environmental problems it is common to  find mathe- 
matical models involving reaction-diffusion systems: 

where X = (Xi , Xa , ... , X,) is a n-dimensional vector of real-valued functions 
depending on time and k spatial variables. D, stands for the j-th diffusivity or 
diffusion coefficient. The state variables XJ are most currently interpreted as 
concentrations or (bio)masses. A stands for the k-dimensional spatial laplacian 
operator, and the nonlinear reaction terms FJ (X) model the interaction between 
the n species. On the other hand, diffusive terms can be considered as describing 
the ability of t3he various species X J  to  occupy different zones in k-dimensional 
space either by some native transport device or through the action of small-scale 
mechanisrns not involving advection . There is no relationship between k and 
n. See [Okubo 19801 for extensive examples. 
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Abstract

A cIass of two-component,one-dimensional, reaction-diffusion systems
of the type usually found in Ecology are analysed in order to establish the
qualitative behaviour of solutions. It is shown that for diffusivities in the
form D j = d j + bjcos(wt + 4J), relationships can be derived from which
amplitude destabilisation can be assessed depending on the wavenumber k
and the variable diffusion coefficients, specially the frequency w. Therefore
time-dependent diffusivities can control the Turing instability mechanism.
The analysis is performed using Floquet's Theory. Numerical simulations
for various kinetics are presented, and bifurcation diagrams in the plane
(k,w) are obtained.

AMS CLASSIFICATIONS: 35K57

1 Introduction

In many ecological and environmental problems it is common to find mathe­
matical models involving reaction-diffusion systems:

ax
_J = F(X) + D·~X·8t J J J

where X = (Xl, X 2 , .•. , Xn)t is a n-dimensional vector of real-valued functions
depending on time and k spatial variables. D j stands for the j-th diffusivity or
diffusion coefficient. The state variables X j are most currently interpreted as
concentrations or (bio)masses. ~ stands for the k-dimensional spatiallaplacian
operator, and the nonlinear reaction terms Fj (X) model the interaction between
the n species. On the other hand, diffusive terms can be considered as describing
the ability of the various species X j to occupy different zones in k-dimensional
space either by sorne native transport device or through the action of small-scale
mechanisms not involving advection . There is no relationship between k and
n. See [Okubo 1980] for extensive examples.
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The simplest case corresponds t o  n = k = 1. If a logistic reaction term is 
employed, the well known Fisher equation arises, see e.g. [Murray 19891 and 
references t herein: 

For k = 1 and n = 2 there exists a broad class of problems ranging from 
predator-prey models t o  morphogenetic ones. Reduction t o  k = 1 is a way of 
simplifying complicated problems by taking avantage of say, symmetries. In the 
rest of the study only systems of this type will be considered: 

In this paper it will be shown that  for certain nonlinear reactiori-diffusion sys- 
tems with time dependent diffusivities amplitude instabilities can appear in a 
way somehow different t o  t he usual Turing instability. Let Xi (x, t )  and X2 (x, t) 
represent the concentrations of the two species, defined in the product set R x IRf 
of an  open real interval R and the positive time axis, excluding O.  Moreover, ad- 
equate side conditions must be irnposed a t  the boundaries of the spatio-temporal 
domain. 

As a starting point for the theoretical analysis, spatially homogeneous dis- 
tributions of both species are supposed on the interval R,  thus leaving only the 
reaction terms: 

The presence of the diffusive terms describes both species varying their concen- 
trations along R ,  and the diffusion coefficients D j  > O are allowed t o  depend on 
time Gourley e t  al. 19961: 

ax, -- a2x, 
at 

- F j  (X) + D .- 
dx2 (j = 1,2)  

where q51 = 0, and d:, 2 b j .  The d j  represent the native diffusion properties of 
the species, whereas the bj reflect the impact of environmental conditions mod- 
ifying the basic pattern described by the  d j .  As a rule, interesting behaviours 
appear when d j  2 b j .  It  is rather natural t o  take wi = w:! = u, where this 
common frequency reflects the presence of environmental cycles in the joint 
evolution of the species. The delay or phase 4 is introduced in order t o  simu- 
late the mutual adaptive ability of the species, a more realistic assumption than 
postulating an  instantaneous response. Nevertheless, it plays little or no role in 
the mathematical analyses t o  follow. 
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The simplest case corresponds to n = k = 1. If a logistic reaction term is
employed, the well known Fisher equation arises, see e.g. [Murray 1989] and
references therein:

ax a2x
8t = aX(l- X) + D ax2

For k = 1 and n = 2 there exists a broad class of problems ranging from
predator-prey models to morphogenetic ones. Reduction to k = 1 is a way of
simplifying complicated problems by taking avantage of say, symmetries. In the
rest of the study only systems of this type will be considered:

In this paper it will be shown that for certain nonlinear reaction-diffusion sys­
tems with time dependent diffusivities amplitude instabilities can appear in a
way somehow different to the usual Turing instability. Let Xl (x, t) and X 2 (x, t)
represent the concentrations of the two species, defined in the product set O X ~+

of an open real intervalO and the positive time axis, excluding O. Moreover, ad­
equate side conditions must be imposed at the boundaries ofthe spatio-temporal
domain.

As a starting point for the theoretical analysis, spatially homogeneous dis­
tributions of both species are supposed on the intervalO, thus leaving only the
reaction terms:

ax
_J = Fj(X)
8t

(j = 1,2)

The presence of the diffusive terms describes both species varying their concen­
trations along O, and the diffusion coefficients D j > Oare allowed to depend on
time Gourley et al. 1996]:

aXj a2x j7ft = Fj(X) + D j ax2 (j = 1,2)

Dj(t) = dj + bj cos(Wjt + 4>j) (j = 1,2)

where 4>1 = O, and dj ~ bj . The dj represent the native diffusion properties of
the species, whereas the bj refiect the impact of environmental conditions mod­
ifying the basic pattern described by the dj. As a rule, interesting behaviours
appear when dj ~ bj . It is rather natural to take W1 = W2 = w, where this
common frequency refiects the presence of environmental cycles in the joint
evolution of the species. The delay or phase 4> is introduced in order to simu­
late the mutual adaptive ability of the species, a more realistic assumption than
postulating an instantaneous response. Nevertheless, it plays little or no role in
the mathematical analyses to follow.
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2 Stability analyses. 
According t o  the classical Turing theory [Turing 19521 (see also [Satnoianu e t  al. 
20001) the reaction terms must describe a spatially homogeneous system with a 
stable singular point Xo  = (Xol, Xo2) in the first orthant, such that  the system 
can be linearised about this point. This is equivalent to: 

a )  Positivity of the components of Xo.  This depends on the particular choice 
of the reaction terms a l s o  called the kinetics- F j .  

b) St,ability conditions for Xo.  These conditions, under the assumption of 
the system being linearisable a t  Xo, amount t'o t r J o  < O and det Jo > O, where 

aF1 aF1 - -  
Jo = la;., = [ %$; i':; ] (*o' - -  

dX1 8x2 

is the jacobian matrix of the Fj  at Xo. For instance, the standard Lotka-Volterra 
reaction terms: 

will not give rise t o  a reaction-diffusion system of this type because trJo = O and 

the singular point (F, ?)is a center. Therefore these cases will be excluded 
2 b l  

and only appropriate kinetics will be dealt with. Linearisation about the singular 
point applies t o  the spatially inhomogeneous system as well, yielding: 

where 

The classical ansatz XT(t, z) = aj(t)eikx is now introduced, meaning that  the 
selected spatial shape of the solutions is e"'", where the wavenumbers k are 
parameters t o  be identified later on. Plugging these expressions in the linearised 
spatially inhomogeneous system, a differential system for the time evolution of 
the amplitudes aj( t )  in the neighbourhood of Xo is obtained: 

If the diffusion coefficients are time-dependent, just substitute Dj( t )  = d j  + 
bjcos(wt + 4 j )  for D j  in the matrix A(k) .  If both bj  = O, then Dj(t) = d j  , 

©
 D

el
 d

oc
um

en
to

, d
e 

lo
s a

ut
or

es
. D

ig
ita

liz
ac

ió
n 

re
al

iz
ad

a 
po

r U
LP

G
C

. B
ib

lio
te

ca
 u

ni
ve

rs
ita

ria
, 2

00
8

2 Stability analyses.

According to the classical Turing theory [Thring 1952] (see also [Satnoianu et al.
2000]) the reaetion terms must describe a spatially homogeneous system with a
stable singular point X o = (XOl, Xoz) in the first orthant, such that the system
can be linearised about this point. This is equivalent to:

a) Positivity ofthe components of X o. This depends on the particular choice
of the reaetion terms -also called the kinetics- F j .

b) Stability conditions for X o. These conditions, under the assumption of
the system being linearisable at X o, amount to trJo < O and det Jo > O, where

(Xo)

is the jacobian matrix ofthe F j at X o. For instance, the standard Lotka-Volterra
reaetion terms:

will not give rise to a reaction-diffusion system of this type because trJo = Oand

the singular point (~,~)is a center. Therefore these cases will be excluded
bz bl

and only appropriate kinetics will be dealt with. Linearisation about the singular
point applies to the spatially inhomogeneous system as well, yielding:

laXi j laag·2
at

where

X](t,x) = Xj(t,x) - XOj, (j = 1,2)

The classical ansatz X](t,x) = aj(t)eikx is now introduced, meaning that the

seleeted spatial shape of the solutions is eikx , where the wavenumbers k are
parameters to be identified later on. PIugging these expressions in the linearised
spatially inhomogeneous system, a differential system for the time evolution of
the amplitudes aj(t) in the neighbourhood of Xo is obtained:

If the diffusion coefficients are time-dependent, just substitute Dj(t) = dj +
bj cos(wt + 4Jj) for Dj in the matrix A(k). If both bj = O, then Dj(t) = dj ,
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implying that  there are no cyclic enviromental influences modifying the native 
diffusive properties of the species. This case can be called a basic or referente 
state. Now the following steps are taken: 

a) A classical Turing analysis of the basic state. 
b) Time-dependent diffusion coefficients are allowed and t,he resulting system 

is studied.Turing Analysis 

Step a )  A = A ( k )  is a numerical matrix depending on the wavenumber k .  
Therefore the origin is a stable singular point if t r A ( k )  < O and det A ( k )  > 0. 
Now, remark that  the stability hypotheses for the singular point X o  guarantee 
t r J o  < O ,  so 

always holds. Thus, the only way for the origin t o  become an  unstable point of 
the basic state after the introduction of the diffusive terms is that  det A ( k )  < 0. 
This determinant is a quadratic polynomial in k 2  : 

det A ( k )  = ~ ( k ~ )  = d ldzk4  - (d2al l  + d la22)k2  + det J o  

whose two roots i f  they e x i s t  determine a n  interval of wavenumbers for which 
det A ( k )  < O, corresponding t o  those "modes" aJ ( t )eAX that  would become 
unstable. Nevertheless, not al1 these modes will be physically relevant, because 
in the usual case of bounded R the boundary conditions select only a denumer- 
able set of feasible wavenumbers, and only those whose squares belong t o  the 
inteival around will develop unstable behaviour. The condition for the interval 
t o  exist is obviously 

and because det J o  > O by hypothesis, for the inequality t o  hold dldn must be 
small. As a rule, if oiie of the diffusivities is taken as fixed, the other one being 
much smaller than i t  will provide a sufficient, condition. 

2.1 Floquet 'S t heory and t ime-dependent diffusivit ies: 

Enter step b). For t,ime-dependent diffusivities of the chosen type, 

al1 - k 2 ( d i  + bl cos w t )  
A ( k , t )  = a12 

a21 a22 - k2(d2 + b2 + 4) 1 
and this is a periodic matrix because A ( k ,  t )  = A ( k ,  T ) ,  where T = t + F .  The 
amplitudes will be given by: 
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implying that there are no cyclic enviromental infiuences modifying the native
diffusive properties of the species. This case can be called a basic or reference
state. Now the fol1owing steps are taken:

a) A classical Turing analysis of the basic state.
b) Time-dependent diffusion coefficients are allowed and the resulting system

is studied.Turing Analysis

Step a) A = A(k) is a numerical matrix depending on the wavenumber k.
Therefore the origin is a stable singular point if trA(k) < O and det A(k) > O.
Now, remark that the stability hypotheses for the singular point X o guarantee
trJo < O, so

always holds. Thus, the only way for the origin to become an unstable point of
the basic state after the introduction of the diffusive terms is that det A (k) < O.
This determinant is a quadratic polynomial in k 2 :

whose two roots -if they exist- determine an interval of wavenumbers for which
detA(k) < O, corresponding to those "modes" aj(t)eikx that would become
unstable. Nevertheless, not al1 these modes will be physical1y relevant, because
in the usual case of bounded D the boundary conditions select only a denumer­
able set of feasible wavenumbers, and only those whose squares belong to the
interval around will develop unstable behaviour. The condition for the interval
to exist is obviously

and because detJo > O by hypothesis, for the inequality to hold d1d2 must be
small. As a rule, if one of the diffusivities is taken as fixed, the other one being
much smal1er than it will provide a sufficient condition.

2.1 Floquet's theory and time-dependent diffusivities:

Enter step b). For time-dependent diffusivities of the chosen type,

A(k, t) = [ al1 - k2(dl + b1 cos wt)
a21

and this is a periodic matrix because A(k, t) = A(k, T), where T = t + 2:. The
amplitudes will be given by:

da- = A(k,t)a
di
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According to  the Ploquet theory, see e.g. [Jordan and Smith 19881, this system 
has solutions a ( t )  obeying the formula 

where p is any eigenvalue of the constant matrix E transforming a fundamental 
inatrix @(t) of the system into its translate @(t + S) -also a fundamental 
rnatrix: @ ( t ) E  = @(t + 2). If p = 1 happens t o  be an eigenvalue of E, a 
periodic solution is at hand, while for real p > 1 there is instability and for real 
p < 1 a stable behaviour appears. Moreover, it is known that  the product of 
the eigenvalues is 

and this suggests considering this product as a new parameter, say b: 

Thus, from Cardano's relationships, the eigenvalues of E are the solutions 
of the quadratic equation 

where h = h ( k ,  u) is some unknown function of the wavenumber k  and the 
frequency u, with b E (O, 1). The actual form of h ( k ,  w) is not relevarit, only its 
range of values is needed. Solvirig for p = i ( h  * d m ) ,  yields a n  analysis 
which can be split into three parts: 

1.- If h2 - 4b > O, with Ihl > 12&l then two positive different real roots 
exist . 

Case la) 

If h  > 2& then pl = h- Jgl'h < 1. Indeed, if it were the case that  

h = a 2 J b  for some a > 1, then pl = &(a- d m )  = d g l ( n ) ,  and gl ( a )  < 1 
for any a > l .  Therefore pl < Jb < 1. On the other hand, the second root p2 
satisfies p2 > 1 if h > b + 1 . This yields an unstable solution. 

If h < b + 1, then p2 < 1 as well, and there can exist stable solutions. If 
h = b + 1, then p2 = 1 and there is a periodic solution. S o  see this, simply 
recall tha t  according t o  the Floquet theory the solutions of = A ( k .  t )  can be 
written in the form 
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According to the Floquet theory, see e.g. [Jordan and Smith 1988], this system
has solutions a(t) obeying the formula

2rr
a(t) = fLa(t + -)

w

where f.L is any eigenvalue of the constant matrix E transforming a fundamental
matrix <I>(t) of the system into its translate <I>(t + 2;) -also a fundamental
matrix: <I>(t)E = <I>(t + :). If I-l = 1 happens to be an eigenvalue of E, a
periodic solution is at hand, while for real fL > 1 there is instability and for real
fL < 1 a stable behaviour appears. Moreover, it is known that the product of
the eigenvalues is

fL1f.L2 = exp(lT trA(k, t)dt)

and this suggests considering this product as a new parameter, say b:

T

b = fL1f.L2 = exp{l [trJo - k2(d1 + d2 + b1 coswt + b2 cos(wt + 4»))dt}

= exp{T[trJo - k2(d1 + d2)]} = exp[T trA(k)] < 1

Thus, from Cardano's relationships, the eigenvalues of E are the solutions
of the quadratic equation

where h = h(k, w) is sorne unknown function of the wavenurnber k and the
frequency w, with b E (0,1). The actual form of h(k, w) is not relevant, only its
range of values is needed. Solving for f.L = ~(h ± )h2 - 4b), yields an analysis
which can be split into three parts:

1.- If h2 - 4b > 0, with Ihl > 12Vbl then two positive different real roots
existo

Case la)

If h > 2.Jb then fL1 = h-~ < 1. Indeed, if it were the case that

h = a2.Jb for sorne a> 1, then fL1 = )b(a- va2 - 1) = .Jb91 (a), and 91 (a) < 1
for any a > 1. Therefore fL1 < Jb < 1. On the other hand, the second root fL2
satisfies fL2 > 1 if h > b+ 1 . This yields an unstable solution.

If h < b + 1, then fL2 < 1 as well, and there can exist stable solutions. If
h = b + 1, then fL2 = 1 and there is a periodic solution. To see this, sirnply
recall that according to the Floquet theory the solutions of ~~ = A(k, t) can be
written in the forrn
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where oj is the characteristic exponent defined through aj = logpj, and 
p j ( t )  are E-periodic functions (remember that  T = %). I t  is clear that  for 
p j  > 1, aj > O and the result, as regards stability, follows immediately. 

Case lb )  
If h < - 2 4  then h2-4b > O as  well, and both roots are negative. Moreover, 

une of them, p1 = h+v > -1, because p ipz  < 1. Indeed, if i t  were tha 
- 

case tha t  h = -u2& with a > 0, the root could be written as pi = &(-a + 
.\/=) = d l i 2 ( a )  > -1 and g2 (U) < 1. The secorid root is p2 = < 
-1 whenever h < -b - 1, and there are unstable solutions. ~yrnmet,r ic~lly,  for 
h > -b - 1 the second root p2 > -1 as well, yielding stable solutions. To end 
up, if h = -b - 1, then ,u2 = 1 and this yields a periodic solution. 

2.- At the bifurcation h2 - 4b = O we obtain h = f 2Jb.  Two cases must be 
distinguished: 

Case 2a) 
If h = +2&, then there exists a uniyue double eigenvalue p = pl = p2 = 

&, the charact'eristic exponent is 

and a stable solution follows. 
Case 2b) 
For h = -2& the eigenvalue is -& and a = log b+ :i with negative real 

part, and a stable solution arises as  well. Note that  the oscillation frequency of 
this solution doubles that  of the original problem, a fact also occurring in the 
case h < -2& studied above. 

3.- Finally, consider the case h E (-2&, 2&), where both eigenvalues are 
complex conjugates and the real part of the exponents aj = g ( l o g  d% + oi )  
is negative , so there exist stable solutions with a complicated structure: In 
addition t o  the "natural oscillations" with frequency w, there appear new oscil- 

lations associated with tan1(-). Therefore there exists locally unstable 

behaviour for \h(k,  w) 1 > b + 1, and the in~t~ability domain is [-2&, 2 ~ 4 1 .  Once 
b is fixed, there exist in the (k,  w)-plane curves described by the implicit equa- 
tion h(k,  w) = const that  separate zones where the amplitudes have different 
qualitative behaviours. Note that  there exist two different types of solutions 
according to  their oscillation frequencies. 

3 Numerical experiments 

3.1 Act ivator-Inhibitor kinet ics 
First we consider an activator-inhibitor system [Murray 1989, p. 3771) given by 
the model equations where al1 parameters have positive values: 
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where aj is the characteristic exponent defined through aj = ~ 10g/1j, and
Pj(t) are 2; -periodic functions (remember that T = 2;). It is clear that for
fLj > 1, aj > O and the result, as regards stability, follows immediately.

Case lb)
If h < -2v'b then h 2 -4b > Oas well, and both roots are negative. Moreover,

one of them, fL1 = h+~ > -1, because fL1fL2 < 1. Indeed, if it were the

case that h = -a2v'b with a > O, the root could be written as /11 = v'b(-a +
~) = v'bg2(a) > -1 and gda) < 1. The second root is /12 = h-~ <
-1 whenever h < -b - 1, and there are unstable solutions. SymmetricaHy, for
h > -b - 1 the second root fL2 > -1 as well, yielding stable solutions. To end
up, if h = -b - 1, then fL2 = 1 and this yields a periodic solution.

2.- At the bifurcation h2 - 4b = O we obtain h = ±2v'b. Two cases must be
distinguished:

Case 2a)
If h = +2v'b, then there exists a unique double eigenvalue fL = fL1 = fL2 =

v'b, the characteristic exponent is

w r, w
a = -logvb = -10gb < O

21f 41f

and a stable solution follows.
Case 2b)
For h = -2v'b the eigenvalue is -v'b and a = l"7r lag b+ ~i with negative real

part, and a stable solution arises as well. Note that the oscillation frequency of
this solution doubles that of the original problem, a fact also occurring in the
case h < -2v'b studied aboye.

3.- Finally, consider the case h E (-2v'b, 2v'b), where both eigenvalues are
complex conjugates and the real part of the exponents aj = ~ (lag v'b + ai)

is negative , so there exist stable solutions with a complicated structure: In
addition to the "natural oscillations" with frequency w, there appear new oscil­

lations associated with tan -1 ( ,¡4b
h
- h

2
). Therefore there exists locally unstable

behaviour for Ih(k, w) I> b+ 1, and the instability domain is [-2v'b, 2v'b]. Once
b is fixed, there exist in the (k, w)-plane curves described by the implicit equa­
tion h(k,w) = const that separate zones where the amplitudes have different
qualitative behaviours. Note that there exist two different types of solutions
according to their oscillation frequencies.

3 N umerical experiments

3.1 Activator-Inhibitor kinetics

First we consider an activator-inhibitor system [Murray 1989, p. 377]) given by
the model equations where aH parameters have positive values:
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du  u2 
- = a - c u +  
at 

+ Diffusion 
4 1  + r/u2) 

a9 
- = u2 - v + Uiffusion 
dt 

The Jacobian of the spatially homogeneous system is: 

And the matrix A(k, t )  is: 

For any parameter choice there exists a singular point in the first orthant, 
because the growing null cline u = u2 always intersects the decreasing one 

u2 
= (i+?u2)(cu-a). 

For instance, for the choice a = 1, c  = 1, and q = .01, the singular point 
-. 899 -0.068 

is Xo = (1.353,1.832), and its Jacobian is 1 , showing tliat 
2.706 -1 

J 

Xo is a stable spiral point. Adding the diffusion coefficients withoiit  time 
dependence di = 0.5, d2 = 5, the relationship 

(dzaii + dla22)2 - 4dldz det Jo = 14.12 > O 

holds and the interval of excitable wavenuinbers is [0.49746, 1.32311. Now let us 
rnodulate the diffusivities using the parameter values bi = 0.4, b2 = 4.5, as well 
as w = 10 and 4 = 1, and take some k in the interval of feasible wavenumbers, 
say k = l .  Figures 1 and 2 show the results: The introdudion of time dependent 
diffusivities inhibits the Turing instabilisation inechanisrn. 

3.2 Schnackenberg kinet ics 

As a second example we consider the Schnackenberg kinetics: 

du - 
at 

= a - u + u2v + Diffusion 

dzl 
- = b - u2v + Uiffusion 
at 
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8u U 2

= = a - cu + (1 2) + Diffusion
U~ v + 7)U

av
&t = U

2
- v + Diffusion

The Jacobian of the spatially homogeneous system is:

J = [

2u
-c+ -----:-----=--;:

v(l + 7)u2 )2
2u

And the matrix A(k, t) is:

A(k,t) ~ [
2u 2

-c+ ( 2)2 -k (dl+bIcos(wt))
v 1 + 7)U

2u
v 2 (1 + 7)U2 )

-1 - k2(d2 + b2 cos(wt + 1»)L
For any parameter choice there exists a singular point in the first orthant,

because the growing null cline v = u 2 always intersects the decreasing one
v = u

2

(1+7]U2)(cu-a)'

For instance, for the choice a = 1, c = 1, and r¡ = .01, the singular point

is X o = (1.3.53,1.832), and its Jacobian is [ ~.' ~~~ -~~68], showing that

Xo is a stable spiral point. Adding the diffusion coefficients -without time
dependence- dI = 0.5, d2 = 5, the relationship

holds and the interval of excitable wavenumbers is [0.49746, 1.3231]. Now let us
modulate the diffusivities using the parameter values bl = 0.4, b2 = 4.5, as well
as w = 10 and 1> = 1, and take sorne k in the interval of feasible wavenumbers,
say k = 1. Figures 1 and 2 show the results: The introduction of time dependent
diffusivities inhibits the Turing instabilisation mechanism.

3.2 Schnackenberg kinetics

As a second example we consider the Schnackenberg kinetics:

8u
&t = a - u + u 2v + Diffusion

8v
&t = b - u 2v + Diffusion
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Figure 1: lnhibit ion o f  Tur ing instability for k = 1 

3 2  , Amplnuder phare p lme 

Figure 2: Both amplitudes tending t o  O for k = l. 

Figure 3: Bifurcation set for t h e  Schnackenberg case 
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amplitude a1

16 32
time

4,8 6.4

Figure 1: Inhibition of Turing instability for h: = 1

32 -r- ..::A::::m~p'"~u::::d':..'p!:::h:::;"':::.'~plan=' --,

Figure 2: Both amplitudes tending to O for k = 1.

Here TurlTIg" instability

Wavenurrber

1.25 1.5 1.75

Figure 3: Bifurcation set for the Schnackenberg case.
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Here the  computations yield a singular point Xo = (a + b, &) in the first 
orthant where the Jacobian is 

whose determinant is ( a+  b)2 and the trace is riegative ptherefore the stationary 
point is a stable o n e  if the inequality 

b 
2- < 1 + (a + b)" 

a + b  

holds. With the parameter values a = 0.1, b = 0.9, the spatially homogeneous 
singular point is Xo = (1,0.9), where the Jacobian Jo equals 

[ o:: n:: ] = [ Y 8  1, ] 
and the matrix A ( k , t )  = A(k ,  w ,  t )  is: 

There exists Turing instability for specific combinations of the solution wavenum- 
ber k and the frequency w of the forcing on the diffusion coefficient, giving rise 
t o  the bifurcation diagram on the (k, w )  plane shown in Figure 3 where pairs 
(k, u) above the parabola-like curve yield Turing instabilities for this particular 
kinetics: 

For instance, setting w = 3, k = .5 -under the parabola- and the diffusion 
parameters di = 0.2, bl = 0.2, d2 = 5 and b2 = 4.9, Figure 4 is obtained, 
showing no Turing instability. where inodulation by the diffusion periodicity is 
easily seen: 

On the other hand, if we take w = 3, k = 1 -above the parabola- and the 
same diffusion parameters, Turing instability is observed in Figure 5, together 
with tbe modulation through the periodicity of the diffusive coefficients: 

Figure 4: Both  amplitudes tending to O: N o  Tur ing instability. 
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Rere the computations yield a singular point X a = (a+ b, (a~bJ2) in the first
orthant where the Jacobian is

whose determinant is (a+b)2 and the trace is negative -therefore the stationary
point ís a stable one- if the inequality

b 2
2-- < l+(a+b)

a+b

holds. With the parameter values a = 0.1, b = 0.9, the spatially homogeneous
singular point is X a = (1,0.9), where the Jacobian Jo equals

and the matrix A(k,t) = A(k,w,t) is:

0.8
-1.8

[
0.8 - k2 (0.1 + 0.2 cos(wt)

-1.8
1

-1- k2 (1.7 + 0.1 cos(wt + 1)

There exists Thring instability for specific combinations ofthe solution wavenum­
ber k and the frequency w of the forcing on the diffusion coefficient, giving rise
to the bifurcation diagram on the (k, w) plane shown in Figure 3 where paírs
(k, w) aboye the parabola-like curve yield Turing instabilities for this particular
kínetícs:

For instance, setting w = 3, k = .5 -under the parabola- and the diffusíon
parameters dI = 0.2, bl = 0.2, d2 = 5 and b2 = 4.9, Figure 4 is obtained,
showing no Turing instability. where modulation by the diffusion periodicity is
easily seen:

On the other hand, if we take w = 3, k = 1 -aboye the parabola- and the
same diffusion parameters, Thring instability is observed in Figure .5, together
wíth the modulation through the periodicity of the díffusíve coefficients:

ampliludea1

Figure 4: Both amplitudes tending to o: No Turing instability.
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arnpltude a l  

Turing instability: Growing amplitudes 

4 Conclusions and Views 

In this work we have shown that  the basic Turing istability mechanism for 
reaction-diffusion systems can inhibited *r enhanced  if the diffusion coeffi- 
cients are allowed t o  have periodic time dependences, a fact that  is studied 
through application of Floquet theory. In order t o  deepen this insight a bifur- 
cation study has been started whose systematic development will be the aim of 
a series of papers t o  come. 
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ampliludea1

Turing instability: Growing amplitudes

4 Conclusions and Views

In this work we have shown that the basic Thring istability mechanism for
reaction-diffusion systems can inhibited -or enhanced- if the diffusion coeffi­
cients are allowed to have periodic time dependences, a fact that is studied
through application of Floquet theory. In order to deepen this insight a bifur­
cation study has been started whose systematic development will be the aim of
a series of papers to come.
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