Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/151915
Título: An end-to-end distributed deep learning system for real-time passenger flow measurement in transport int
Autores/as: Salas, Eduardo
Navarro, para que nosdiga si , Pedro J.
Rosique, Francisca
Benavente Ponce, Juan 
Rivadeneira, Ana Maria
Clasificación UNESCO: 3327 Tecnología de los sistemas de transporte
Palabras clave: End-To-End Systems
Passenger Flow Measurement
Transport Interchanges
Deep Learning
Computer Vision
Fecha de publicación: 2025
Publicación seriada: Applied Intelligence 
Resumen: As urban populations continue to grow, managing and optimizing urban mobility has become increasingly complex, especially in multimodal transport interchanges. Accurate passenger flow measurement has therefore become essential for operators to mitigate congestion and improve service efficiency. This work proposes a scalable and flexible end-to-end system designed to accurately measure and track passenger flow in real-time. The system integrates a distributed network of Edge-AI sensor nodes with deep learning algorithms for local passenger detection and tracking, while a central processing server aggregates node outputs to derive flow counts. This approach overcomes the limitations of traditional single-sensor solutions by effectively handling occlusion and complex spatial configurations across multiple access points. Validated in a high-transited transport hub, results show that the system achieves accuracy rates between 94.03% and 99.30% even under crowded conditions with flow rates of 100 persons per minute, demonstrating its robustness and practical applicability in dynamic, high-density environments.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/151915
ISSN: 0924-669X
DOI: 10.1007/s10489-025-06954-9
Fuente: Applied Intelligence [ISSN 0924-669X], v. 55 (16), (Noviembre 2025)
Colección:Artículos
Adobe PDF (3,67 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.