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of remote workers have introduced greater dynamism and 
complexity into individual mobility and multimodal trans-
portation connections. This demographic shift necessitates 
optimizing multimodal transportation systems to ensure 
efficient passenger flow and reduce congestion at transport 
interchanges. Consequently, the transportation prediction 
models previously employed, based on historical data and 
static predictive models, are becoming increasingly com-
plex and ineffective, [2].

Transport interchanges are designed to facilitate multi-
modal transportation connections, enhancing accessibility 
and connectivity among different metropolitan and urban 
transportation systems [3]. These urban spaces increase 
transportation efficiency and optimize routes by consoli-
dating various types of transport in one location. From a 
user perspective, transport interchanges reduce waiting 
times and offer recreational spaces and commercial activi-
ties, contributing to a better perception of the transporta-
tion service by the end-user [4]. Additionally, transport hubs 
help reduce emissions in cities. For instance, concentrating 
vehicles in underground hubs allows for the capture and 
filtration of CO2 emissions and noise reduction, mitigating 
the environmental impact of transportation and contributing 

1  Introduction

Urban mobility is facing unprecedented challenges due to 
the continuous increase in urban populations. The United 
Nations (UN) [1] estimates that by 2050, 68% of the global 
population will reside in urban areas. Optimizing and siz-
ing various modes of transportation in cities is a significant 
challenge for public and private transportation management 
institutions. Factors such as the increasing urban popula-
tion, migration to suburban areas due to real estate specu-
lation and rising housing prices, and the growing number 
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to sustainability [5]. However, one of the main operational 
challenges in these hubs is managing passenger flow, par-
ticularly during peak hours when overcrowding leads to 
inefficiencies and delays. Ensuring optimal transit opera-
tions requires agile and automated systems for measuring 
passenger flow that accurately reflect the congestion levels 
in key areas of the transport interchange. Real-time mea-
surement of passenger flow transitioning from one mode 
of transport (such as rail, metro, subway, bus stations) to 
others (pedestrian, cyclist, private vehicle, taxi) will enable 
dynamic planning and optimization of the transport hub.

Several methodologies have been proposed for passen-
ger flow measurement, ranging from manual counting to 
sensor-based tracking solutions. Traditional pedestrian flow 
monitoring systems typically rely on single-camera setups 
or sensor-based counting, which are often limited to con-
trolled environments such as narrow corridors or specific 
entry/exit points. These methods, while effective in specific 
scenarios, struggle to provide reliable results in large, open 
spaces within transport hubs, where high-density passenger 
movements and occlusion effects complicate detection and 
tracking.

Recent advancements in Artificial Intelligence (AI) [6] 
and Computer Vision Systems [7] have enabled the devel-
opment of more sophisticated passenger detection and 
counting solutions [8]. Deep learning architectures such 
as Convolutional Neural Networks (CNN) [9], Recurrent 
Neural Networks (RNN) [10], Long Short-Term Memory 
(LSTM) [11, 12] and Vision Transformer (ViT) [13] have 
demonstrated their effectiveness and robustness in automat-
ically counting and measuring passenger flows in various 
scenarios. Some of the most used techniques include object 
detection models specifically trained to identify passengers, 
cars, trucks, and cyclists. However, most existing solutions 
are constrained to single-sensor setups operating in narrow 
or controlled environments. These systems often struggle 
with scalability, occlusion, and performance degradation in 
complex, high-density spaces like large transport hubs.

In recent years, several multi-sensor approaches have 
been proposed to address these issues, leveraging data 
fusion from multiple viewpoints to improve counting accu-
racy under challenging conditions such as severe occlusion, 
illumination changes, and high crowd density. Examples 
include transformer-based architectures for multi-view 
crowd counting [14], modal adaptative spatial aware fusion 
and propagation networks for multimodal vision crowd 
counting [15], and multi-view linkage strategies for indoor 
person counting [16]. Despite their improvements, many of 
these approaches require high-bandwidth data transmission 
to centralized servers or face limitations in adaptability to 
heterogeneous layouts, which constrains their scalability in 
large-scale deployments.

To address these limitations, this work presents a novel 
end-to-end system that combines Edge Artificial Intelli-
gence (Edge AI) with a distributed deep learning architec-
ture for real-time monitoring of passenger flow in transport 
interchanges. The proposed approach combines adaptive 
camera field-of-view segmentation with a robust re-identi-
fication strategy to accurately track individuals across over-
lapping sensor nodes. Unlike conventional methods, our 
system is designed to operate effectively in complex spatial 
configurations and under varying levels of congestion and 
lighting. By executing inference locally on each sensor node 
and exchanging only lightweight data, the proposed solu-
tion minimizes network load and latency, enabling efficient 
scalability across diverse transport hub layouts. Its perfor-
mance is evaluated through extensive experimentation in a 
real-world transport hub, demonstrating high accuracy, scal-
ability, and resilience. Furthermore, a comparative analysis 
with existing approaches highlights the advantages of our 
method in terms of precision, adaptability, and deployment 
feasibility.

The remainder of this paper is structured as follows: Sec-
tion 2 reviews the related work in the field of passenger flow 
monitoring and intelligent transport systems. Then, Section 
3 provides a detailed description of the materials and meth-
ods used, including the hardware setup, the proposed count-
ing methodology, the deep learning models and techniques 
employed, and the case study. Section 4 presents the evalu-
ation metrics, the experimental setup, the obtained results, 
and a comprehensive discussion of key findings, including 
comparison with other works. Finally, Section 5 concludes 
the document by summarizing the main contributions, out-
lining practical implications, and proposing future research 
directions to enhance and refine the system.

2  Related works

The development of automatic passenger counting (APC) 
and flow measurement in specific areas of transportation 
systems has attracted significant research attention in recent 
years, focusing primarily on specific transportation environ-
ments such as subway platforms, bus boarding and alight-
ing areas, and high-density commercial spaces. Various 
approaches have been proposed, from classic sensor-based 
systems to advanced computer vision and artificial intelli-
gence solutions.

As traditional sensor-based solutions reached their limi-
tations, the field of passenger counting has increasingly 
adopted computer vision approaches, enhanced by advances 
in artificial intelligence [17]. These systems leverage visual 
data captured by cameras and process it using AI models 
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capable of detecting and tracking passengers with high 
accuracy, even in complex and crowded environments.

Convolutional Neural Networks (CNNs) have been 
widely used for people counting due to their ability to 
extract complex spatial features from images. A prominent 
example is RetailNet [18], which combines the traditional 
RGB image with an additional layer that indicates the 
probability that a pixel contains a person. This technique 
improves the accuracy in estimating the number of people 
present; however, its effectiveness is mainly limited to con-
trolled indoor spaces, which restricts its application in trans-
port exchangers with dynamic lighting and variable crowd 
densities. To address these limitations, LRCN-RetailNet 
[19], an advanced version that integrates Long-Short-Term 
Convolutional Neural Networks (LRCN). This hybrid 
architecture combines the capabilities of CNNs for spatial 
feature extraction with Recurrent Neural Networks (RNNs) 
to capture temporal coherence in video sequences, allow-
ing to more accurately predict the number of people by tak-
ing advantage of temporal information and better handling 
occlusions and variations in people’s postures.

Based on CNN, YOLO models have been widely used 
in passenger detection in public transport due to their abil-
ity to perform real-time detections with high accuracy. 
These approaches have demonstrated good performance in 
controlled environments such as buses, subway platforms, 
and narrow corridors, often using single-camera systems 
mounted in overhead or frontal positions [20–24]. In some 
cases, multi-stage architectures combining feature extrac-
tion with object detection are used to improve accuracy in 
dense areas [25].

Other works have focused on tracking and measuring 
passenger flow or congestion using video surveillance and 
trajectory analysis. For instance, entropy-based metrics 
have been proposed to estimate congestion levels near plat-
form screen doors [26].

On the other hand, LSTMs, a variant of RNNs, are espe-
cially effective at capturing long-term dependencies on 
sequential data. LSTM models have been used to predict 
ridership in public transport areas [27, 28]. For example, a 
model called NAPC (Neural Algorithm Passenger Count-
ing) is presented [11], based on an LSTM architecture for 
counting passengers in public transportation during board-
ing and alighting operations. The model exploits the fea-
tures of LSTM architectures for long-term event memory 
in time series. By leveraging 3D LiDAR data, this model 
improves accuracy in tracking boarding and alighting pas-
sengers, offering an average relative error of 3%. However, 
its reliance on LiDAR technology makes it costly and chal-
lenging to deploy in large-scale, multi-node environments 
such as transport interchanges.

Inspired by advances in natural language processing, 
Transformers have been adapted for computer vision tasks 
and time series prediction in public transportation. A study 
utilized a Transformer model based on LSTM to estimate 
the flow of passengers in transfer corridors between inte-
grated hubs in an urban agglomeration [29]. This approach 
demonstrated high adaptability and good performance in 
passenger flow prediction, assisting in the efficient manage-
ment of multimodal transportation systems.

Deep learning-based architectures employed in intel-
ligent transportation systems are evolving towards end-to-
end systems [30–32]. This approach integrates all workflow 
stages into a single architecture: data collection, preprocess-
ing, training, inference, and evaluation. For example, the 
latest end-to-end architectures for autonomous driving [33] 
consolidate all traditional phases of perception, localization, 
navigation, and control into a unified system that receives 
input from the vehicle’s sensors and generates control 
actions for the vehicle’s manoeuvring elements [34].

Edge Artificial Intelligence (Edge AI) is transforming 
passenger counting systems in public transportation by 
enabling data processing directly on local devices such as 
cameras, sensors, or onboard computers. This localized 
approach reduces latency, enhances reliability in areas 
with limited connectivity, and addresses privacy concerns 
by keeping sensitive data on-device. By analyzing data at 
the source, Edge AI facilitates real-time decision-making, 
improves operational efficiency, and enhances passenger 
safety and comfort. The integration of Edge AI into pub-
lic transit systems represents a significant advancement in 
creating smarter, more responsive urban mobility solutions.

For instance, Parquery [35] developed a camera-based 
passenger counting system for Swiss Federal Railways 
(SBB CFF FFS), achieving 98% accuracy by analyzing 
video streams from existing onboard security cameras using 
AI algorithms. These cameras are standard RGB security 
devices primarily intended for surveillance, and the infer-
ence is performed centrally on cloud or on-premise serv-
ers. A recent study [36] developed a passenger counter for 
bus stops using YOLOv3 executed on a Maixduino board 
(RISC-V K210 microcontroller with AI accelerator). This 
low-cost device performs real-time person detection at the 
edge, demonstrating satisfactory accuracy in crowd estima-
tion. On the other hand, specialized companies like Outsight 
[37] or Amorph Systems [38] offer Edge AI platforms for 
LiDAR, capable of converting 3D data into flow metrics 
instantly, allowing the measurement of queues and people 
flows in airports and other transportation environments. 
In urban transportation, passenger counting manufacturers 
like DILAX [39] have introduced sensors on bus and train 
doors to classify objects and count people with up to 98% 
accuracy.
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data. A local processing server integrates and processes the 
data received from the sensor nodes. The processing server 
identifies whether each movement corresponds to an entry 
or exit and sends the final processed information regarding 
passenger count and flow to the database.

Overall end-to-end architecture for measuring passenger 
flow in any transit area is shown in Fig. 1. Local movement 
data from each node is post-processed on the local process-
ing server by dedicated instances for each measurement 
zone. This post-processing results in a simplified counting 
data, representing the number of passengers crossing in 
each direction within the monitored areas. This data is then 
sent to the transport interchange management system.

3.1.1  Sensor nodes and sensor node groups

In our proposed solution, sensor nodes are responsible for 
the system’s heaviest workload. As depicted in Fig. 1, each 
node integrates image acquisition, deep learning-based pas-
senger detection, passenger tracking, and lightweight script-
based processing.

Each sensor node is equipped with an OAK-1 PoE cam-
era, featuring an IMX378 sensor with a maximum resolu-
tion of 4056x3040 pixels and a processing capacity of 4 
TOPS (Tera Operations per Second), of which 1.4 TOPS 
are dedicated to AI inference. This enables real-time execu-
tion of AI algorithms directly at the capture site (Edge AI 
[40]). In addition to image acquisition, this model supports 
deep learning-based object detection, object tracking and 
lightweight Python script execution. This reduces the com-
putational load on the local processing server, ensuring a 
scalable and efficient implementation.

The processing pipeline at a sensor node involves the fol-
lowing steps: 

Although these studies have made significant advances in 
passenger detection and counting in specific scenarios, they 
face limitations in adaptability and scalability across vari-
ous transportation environments. Most of these approaches 
are designed for particular contexts and do not offer a com-
prehensive and flexible solution for measuring passenger 
flow in different areas of a transport hub.

3  Materials and methods

This study evaluated the implementation and performance 
of an advanced passenger flow measurement system in a 
multimodal transportation environment. The case study 
focused on the Moncloa transport interchange in Madrid, a 
critical transportation node integrating metro services with 
urban and interurban buses. The following sections detail 
the materials used and the methods applied in the research. 
The end-to-end solution is described, detailing the system’s 
sensing elements, the central processing unit, the proposed 
counting method, the deep learning techniques applied, and 
finally, the case study.

3.1  End-to-end passenger flow measurement 
system

An end-to-end system based on deep learning and computer 
vision techniques was implemented to measure passenger 
flow. This solution employs a distributed computer vision 
system to (i) capture images in various areas of the trans-
port interchange, (ii) perform Edge AI based preprocess-
ing, and (iii) send the local passenger flow state to a local 
processing server for post-processing. The system is based 
on a distributed architecture, which uses intelligent sensor 
nodes to capture and process real-time passenger movement 

Fig. 1  Proposed end-to-end archi-
tecture for measuring passenger 
flow in any transit area. Each sen-
sor node integrates image acquisi-
tion, passenger detection (detector 
module), passenger tracking, and 
local counting, whose outputs 
are post-processed at the local 
processing server before being 
forwarded to the transport inter-
change management system
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Camera field of view subdivision  To detect passenger move-
ments accurately, we employed an approach based on subdi-
viding each sensor node’s field of view into multiple areas. 
These areas are used to track and categorize passenger 
movements across the observed measurement zones. This 
subdivision is configured and adjusted based on the envi-
ronment, allowing areas to be reduced or collapsed if neces-
sary to simplify the analysis.

In the basic field of view subdivision template, each 
sensor node divides its field of view into five areas: upper, 
lower, left, centre and right (Fig.  2(a)). This template is 
conceived as a configurable design parameter rather than a 
fixed structure, and the number of areas can be reduced to 
the minimum required for accurate movement estimation. 
The subdivision defines the resolution at which movements 
are measured: more areas allow finer discrimination of 
directions, while fewer areas provide a simpler configura-
tion without affecting the consistency of the calculations. 
In practice, most use cases require only two or three areas, 
while the full five-area configuration is reserved for more 
complex flows. Figure  2(b) illustrates a specific use case 
where the subdivision has been customized for a particular 
zone, adjusting the size and number of areas according to 
the environment. In that case, the left area of the node is 
used to handle the non-vertical movement, where upper and 
left areas represent the same movement direction.
As the camera field of view can contain non-interest places, 
the addition of restriction measurement areas is also sup-
ported. The use of these restriction areas is also intended to 
avoid measurement errors due to overlapping fields of view 
from neighbouring cameras (Fig. 2(c)).

When two nodes cover adjacent areas, it is essential that 
their subdivision configurations are consistently aligned to 
avoid discrepancies in tracking passengers moving horizon-
tally from one node to another. As shown in Fig. 2(c), both 
nodes must be perfectly aligned in orientation, and their 
areas should maintain the same vertical size. This ensures 
that any movement of passengers between nodes is accu-
rately captured in the corresponding area without duplica-
tion or omission in the count. To maintain same camera 
orientation, fixed angle supports were used during sensor 
installation procedure. With this configuration, strict tem-
poral synchronization is not required, as transitions between 
nodes are consistently resolved by the spatial alignment of 
the subdivided areas.

To ensure the proper functioning of the restriction areas, 
the delimiting lines are positioned on a plane parallel to the 
ground at an average height of 0.825m, corresponding to the 
centre of the passengers’ bounding box, based on an aver-
age person height of 1.65m. This approach ensures smooth 
transitions for lateral passenger movements between nodes. 

1.	 Image acquisition: Continuous capture of RGB images 
from the monitored area.

2.	 Passenger detection: Passengers are identified within 
the node’s field of view using a lightweight deep-learn-
ing object detection model.

3.	 Passenger tracking: Detected passengers are tracked 
across various areas within the node’s field of view 
using an object tracker.

4.	 Movement detection: The field of view of the node is 
subdivided in different areas, facilitating thereby the 
recognition of passenger movements within the local 
environment of the node.

In more complex scenarios or those with higher passenger 
traffic, multiple sensor nodes can be grouped into a sen-
sor node group (as shown on the left side of Fig. 1). This 
approach enables coordinated management of larger areas, 
ensuring complete coverage while avoiding duplication in 
passenger detection and counting.

The sensor nodes and sensor node groups provide as out-
put passenger movement data in a local reference system 
unique to each sensor node.

3.1.2  Local processing server

Once the visual data is gathered by the sensor nodes and 
partially processed to obtain local movement data, it is 
transmitted to the local processing server. The server plays 
a critical role in the system by (1) connecting and configur-
ing the sensor nodes, (2) integrating the collected data from 
individual nodes within a group and, (3) processing local 
displacements to generate the final passenger counts for 
each measurement zone.

The refined data is sent to the transport interchange 
management system and used in centralized management 
processes. This data can be stored in a local or cloud-based 
database, used for route optimization and planning, dis-
played on information screens within the transport hub, or 
even used to trigger alerts for the operators in the event of 
critical situations.

In our implementation and testing, an industrial-grade 
PC with 8 PoE ports was used as the local processing server, 
along with two PoE switches. However, the low computa-
tional load required allows for the use of lightweight com-
puting devices in combination with the correspondent PoE 
switch networking.

3.1.3  Proposed counting method

This subsection details the proposed method, divided into 
three parts: camera field of view subdivision, displacement 
detection, and entry/exit counting.
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representing one displacement from the left to the centre 
area and another one from the centre to the right area.

Entry and exit counting  Once the nodes have transmitted 
the origin–destination matrices M to the local processing 
server, the server derives entry/exit events using the pre-
assigned role of each area (“In”, “Out”, or “Unassigned”). 
Each time a passenger moves from one area to another 
within a node’s field of view, the server evaluates the ori-
gin and destination roles and increments the corresponding 
counter:

	● Entry: Incremented when a passenger moves from an 
“Out” or “Unassigned” area to an “In” area, indicating 
the passenger has entered the place of interest.

	● Exit: Incremented when a passenger moves from an 
“In” or “Unassigned” area to an “Out” area, signifying 
that the passenger has left the monitored place.

	● None: Movements into “Unassigned” areas are ignored 
for counting.

Formal modelling  For each sensor node, M[i,j] stores the 
number of movements from area i to area j. Based on the 

A calibration procedure was carried out using sticks marked 
at 0.825m to delimitate restriction areas within each camera 
field of view.

Displacement detection  For each node, all movement data 
is aggregated within a fixed time window into a 5×5 origin–
destination matrix (M), where rows represent the area of the 
first detected position and the columns match the area of 
the final position. Each matrix cell represents the measured 
number of passenger displacements throughout the defined 
areas. This data is sent from the node to the local processing 
server. Inference speed becomes critical as low frame rates 
can lead to passenger disappearance without detecting its 
transit through a specific area, especially in the boundaries. 
An example of this counting matrix can be found in Table 1, 

Table 1  Example of a node origin–destination counting matrix. Each 
row represents the area where a passenger was first detected, and each 
column corresponds to the area where the passenger was last observed
Origin \Destination Up Down Left Centre Right
Up 0 0 0 0 0
Down 0 0 0 0 0
Left 0 0 0 1 0
Centre 0 0 0 0 1
Right 0 0 0 0 0
In this example, the matrix encodes one displacement from the left to 
the centre area and another from the centre to the right area

Fig. 2  (a) Representation of the 
five-area subdivision template 
shown in green lines. (b) Specific 
area subdivision for a particular 
use case. (c) Adjacent cameras 
using restricted measurement areas 
(shaded in red)
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be trained for the defined working distances and optimized 
for the most common passenger sizes relative to the camera 
image at measurement zones. On the other hand, pre-trained 
models provide a fast implementation with high generaliza-
tion for detection tasks.

The training process requires a large amount of data to 
be captured and labelled following an object detection for-
mat. This process can be carried out in two ways: manual 
or semi-automated. Semi-automated labelling can be per-
formed using a pre-trained model to generate temporary 
bounding boxes requiring subsequent human adjustment. 
However, the data collection and labelling process in both 
methods can be time-consuming, and the amount of needed 
data and computational resources are not available for 
everyone. In those cases, the implementation of pre-trained 
models is highly beneficial. The selected light-weight per-
son detection pre-trained models were MobileNet SSD [44, 
45] and Person Detection Retail 0013 [46], both obtained 
from the OpenVINO toolkit [47].

Datasets  Two distinct custom datasets were recorded for 
the specific scenarios analysed in this work. One dataset was 
acquired for the escalator access case study, while another 
was collected for wide corridor scenarios. Additionally, a 
mixed dataset combining data from both scenarios was gen-
erated to evaluate whether a more generalized model offers 
advantages over the scenario-specific ones.

The first escalator dataset consisted of 432 manually 
labelled images from an escalator access scenario with 
resolutions of 1920x1080, as illustrated in Fig.  3(a). The 
photos were taken from 4 installed sensor nodes at differ-
ent heights, two of them at 3.8m height with at 65o inclina-
tion and a 4.1m distance, while the rest of the cameras were 
installed at a 2.9m height, 65o inclination, and 2.3m dis-
tance from the measurement section. Because of the label-
ling criteria, the generated bounding box had to cover the 
whole target using the smallest size possible for highly vis-
ible passengers. On the other hand, highly occluded persons 
had their bounding box cropped at the height where most of 

predefined area roles, passenger entries (E) and exits (X) are 
then computed according to (1) and (2), respectively.

E =
∑

i ∈ {Out, Unassigned}
j ∈ {In}

M [i, j]
� (1)

X =
∑

i ∈ {In}
j ∈ {Out, Unassigned}

M [i, j]
� (2)

This process ensures that only relevant movements are 
counted as entries or exits, minimizing unnecessary data 
accumulation and enhancing the system’s accuracy.

3.1.4  Deep learning models for passenger movement 
detection

The core part of the end-to-end system is the deep learn-
ing model used in the sensor nodes. The model’s average 
precision and inference time are key factors determining 
overall sensor performance. The selected OAK-1-PoE cam-
eras are only compatible with the “.blob” MyriadX model 
format, which requires any used model to be converted into 
this format. The camera processors achieve 1.4 TOPS of AI 
processing power, restricting the use of medium and heavy 
models. It also supports built-in object trackers, including 
trackers such as Short-Term KCF Tracking (Kernelized 
Correlation Filter), Non-Visual Short-Term Tracking, Zero-
Term Imageless Tracking and Colour Histogram Tracking 
[41–43].

In this work, pre-trained and custom-trained passenger 
detection models were compared. Using custom-trained 
deep learning models is highly beneficial, specifically in 
interiors where camera and light conditions are consistent. 
However, a comparison was conducted to identify whether 
the differences in accuracy are significant enough to jus-
tify the additional effort required to generate and label the 
dataset and train the custom models. Custom models can 

Fig. 3  Example frames from the 
custom datasets: (a) Escalator data-
set and (b) Corridor dataset
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box prediction and classes in a single pass of the network, 
which optimizes speed. Within this category, the YOLOv5, 
YOLOv8 and YOLOv11 [48–50] versions were specifically 
selected. This choice is justified because, chronologically, 
each version incorporates significant improvements in its 
design and capabilities. All the selected architectures have 
implementations (‘n’, ‘s’, ‘m’, ‘l’, and ‘x’) with different 
numbers of parameters, which has facilitated their deploy-
ment in Edge AI devices, maximizing the flexibility and 
applicability of the system.

Given the deployment constraints previously outlined 
(MyriadX .blob compilation and the need to sustain a mini-
mum on-node frame rate to maintain tracking continuity), 
we restricted the search to detectors that are both compatible 
with the OAK-1 PoE sensor and capable of achieving suf-
ficient frame rate. While recent transformer-based detectors 
(e.g., DETR, Deformable-DETR, RT-DETR) perform well 
on GPU, they are not supported on MyriadX and therefore 
fall out of scope for on-node evaluation in this work.

Mdels in this work were trained using [48–50] the 
Ultralytics v8.3.51 framework, which implements the 
YOLO family using the PyTorch v2.1.1 library. Using this 
framework each YOLO model is initialized from COCO-
pretrained weights provided by Ultralytics and fine-tuned 
on our datasets. The training was conducted in a NVIDIA 
RTX3070 with 8 GB of VRAM for 1000 epochs with a batch 
size of 32, image resolution of 320x320 pixels, initial learn-
ing rate of 0.01, momentum of 0.937, 3 warmup epochs, and 
optimizer set to auto. The learning rate followed the default 
linear decay schedule in Ulatralytics, decreasing from the 
initial value (0.01) to the final learning rate across training. 
An early stop criterion was applied, terminating training if 
no improvement was observed over the last 100 epochs. 
Additionally, data augmentation techniques were applied 
during the training process to improve model generaliza-
tion. The augmentation criteria included HSV variations 
with a 1.5% maximum HUE change, 70% for saturation and 
40% maximum brightness variation. Other modifications 
included image translation in both axes up to 10% of the 
image size, scale variations up to 50%, a 50% chance of 
horizontal flipping, and mosaic augmentation.

3.2  Case study: moncloa transport interchange

The case study is located at the Moncloa transport inter-
change in Madrid, Spain’s capital. The Moncloa transport 
hub is a major transportation interchange that integrates 
metro services with urban and interurban buses.

With an area of 46,000 m2, 34 bus platforms, 32 shops, 
1,500 underground parking spaces, and 280,000 passengers 
circulating daily, this transport hub has become one of the 
most important in Madrid due to its ability to manage a large 

the body is occluded. The dataset was shuffled and then sub-
divided into three sets: train (70%), validation (15%), and 
test (15%). Due to the low performance on crowded pas-
senger flows, a second set of data was captured and labelled, 
including data with high passenger density. The additional 
data contained 63 images from the same cameras taken at 
crowded moments and subdivided using the same propor-
tions as the first dataset, which resulted in a second version 
of the dataset with a total of 495 images containing 1893 
passengers. All the extra images were labelled using semi-
automatic labelling procedures, applying manual labelling 
adjustment to the pre-processed labels generated by a model 
trained on the first 432 images. Initially, more images were 
taken to expand the dataset; however, only 63 images were 
selected to be included in the extended dataset because the 
first model performed poorly on them.
A different dataset was acquired from wide corridor scenar-
ios, collecting 178 images from eight sensor nodes in two 
wide corridors (Fig. 3(b)). The first corridor is 17.6m wide, 
requiring five nodes to cover the entire section. Installed 
cameras leverage the presence of columns to reduce over-
lapping areas at the measurement zones. Nodes were located 
at a 3.1m height, and columns left spaces of 3.9m, 6.6m, and 
6.6m wide between them. In this scenario, most cameras 
used a 60o inclination, whereas the camera covering the 
3.9m wide section used 62.5o to allow full coverage. While 
the original intention was to locate the cameras from 2.25m 
to 2.5m distance to the measurement section, local restric-
tions forced camera placement at 4.15m from the measure-
ment section. The second corridor is 10m wide, where 6.8m 
of the measurement section is shared between two cameras 
and the remaining space is covered by a single node due to 
the presence of a ramp. The three cameras of this sensor 
node group located in this corridor had a height of 2.7m, a 
60o inclination, and a distance to the measurement section 
of 1.56m. The first image set was expanded with 98 semi-
automatic labelled images, resulting in a total size of 276 
images containing 1297 passengers.

Model architecture  Selecting a deep learning architecture 
to solve an object recognition problem is a complex task 
that depends on multiple variables, such as the need for real-
time processing, the size of the available dataset, the com-
putational capacity of the system, the accuracy required, 
and existing implementations.

Object recognition architectures fall into two main cat-
egories: (1) Two-Stage Detectors (e.g. R-CNN, Faster 
R-CNN and Mask R-CNN); (2) One-Stage Detectors 
(e.g. YOLO, SSD and RetinaNet). In this research work, 
single-stage detectors were chosen due to their suitability 
for real-time tasks. These architectures perform bounding 
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	● Stairs and Escalators: To facilitate access between dif-
ferent levels of the hub and efficiently manage verti-
cal passenger flow, the hub includes both escalator and 
fixed stairs:

	– Escalators: The escalators have a 30-degree incline 
and a total width of 1.59 meters.

	– Fixed Stairs: These stairs have a 30-degree incline, 
widths ranging from 2.00 to 3.15 meters, and ceiling 
heights varying from 2.8 to 4.8 meters.

	● Commercial and Recreational Areas: The interchange 
includes 1,500 m2 of commercial areas offering shops, 
restaurants, and other services, enhancing the user expe-
rience and making use of waiting times.

The proposed end-to-end system has been tested on Island 
1 (Fig. 4(a)) of the Moncloa transport interchange and its 
lower level (Fig. 4(b)). Island 1 has five access points: two 
leading to the exterior, one to the Metro platforms, and two 
connecting the island to the lower level. The lower level 
has three access points: two connecting to Island 1 and one 

volume of passengers each day. This makes it an ideal test-
ing environment for this study.

This transport interchange is divided into three islands 
and several underground levels, featuring extensive facili-
ties, including:

	● Metro Platforms: The interchange connects with two 
main metro lines of the city. The 115-meter-long board-
ing and alighting platforms accommodate trains of up 
to six cars.

	● Bus Terminals: The bus station is located on level -1, 
at an elevation of 651 meters above sea level. It has 15 
bays, each with a 12-meter-long parking space. The ter-
minals handle urban and interurban buses, approximate-
ly 1,500 buses daily.

	● Passenger Walkways and Corridors: The interchange 
features wide corridors and walkways that allow pas-
sengers to move smoothly between different areas, min-
imizing waiting time and improving accessibility. The 
passenger corridors have ceiling heights ranging from 
2.8 to 3.2 meters and widths varying from 3.3 to 17.6 
meters.

Fig. 4  Deployed sensor nodes at 
the Moncloa transport hub in (a) 
Island 1 and (b) the lower level. 
A, C, and G correspond to single 
nodes on stairs/escalators, B, H, 
and I to node groups on stairs/
escalators, and D, E, and F to node 
groups in wide corridors
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	● TP (True Positive): Number of detections correctly clas-
sified as the target class.

	● FP (False Positive): Number of detections being mis-
classified as the target class.

	● FN (False Negative): Number of undetected target class 
objects.

Due to the trade-off between precision and recall, a robust 
model requires the consideration of other metrics derived 
from both. The Precision-Recall curve is a graphical rep-
resentation of the trade-off between precision and recall, 
which shows when they are unbalanced. When the curve 
maintains high levels of precision across all levels of recall, 
it is considered an indicator of model robustness. Since dif-
ferent threshold values can be used to consider a detection 
valid, multiple precision-recall curves are usually drawn 
with different thresholds. Average Precision (AP) is a sin-
gle-value metric that summarizes precision-recall quality 
for a specific model class. However, the most used metric 
in object detection is the Mean Average Precision (mAP), 
which extends the concept of AP to all classes supported 
by the model, resulting in an overall measure of the mod-
el’s quality. It is very common to encounter this metric as 
mAP@0.5, representing that every AP has been computed 
using an IoU (Intersection over Union) threshold of 0.5. 
This value indicates that a detection is correct if the overlap-
ping area between the ground truth and the detection bound-
ing boxes is higher than 50% of their combined area.

Another widely used metric that combines precision, and 
recall is the F1 score. This metric is defined as the harmonic 
mean of precision and recall values, as shown in (5). The F1 
score is considered reliable only when the different classes 
in a dataset are balanced. The F1 score is a particular case of 
a more general function called Fβ , defined in (6)). Higher β 
values in Fβ  provide more weight to the recall value in the 
function, whereas lower β values give higher importance 
to precision. This metric is not restricted to evaluating deep 
learning models; it can be applied to more complex systems.

F1 = 2
1

Recall + 1
Precision

= 2 · Precision · Recall
Precision + Recall � (5)

Fβ = (1 + β2) · Precision · Recall
β2 · Precision + Recall � (6)

The first step for computing overall system performance is 
gathering ground truth data. The ground truth data acquisi-
tion process involved manual person counting in the whole 
access; for that matter, the counting was performed using a 
push-button-based smartphone app, which saves the push 
event time. As the installed system saves a single (in, out) 
vector with all gathered data in the same period, the ground 

leading to a connection with the Metro and the rest of the 
hub. The access points to Island 1 include wide corridors and 
stairs or escalators, posing a challenge due to the horizontal 
and vertical movements of passengers and the potential for 
significant occlusion in the field of view of the cameras.

As illustrate in Fig. 4, the sensor nodes (represented in 
red and labeled with letters A–I) were strategically placed 
at key points in the transport hub to maximize coverage 
and minimize occlusion. Specifically, two area types were 
addressed:

	● Wide Corridors: Due to their size, these presented sig-
nificant challenges, with ceiling heights between 2.8 and 
3.2 meters and widths ranging from 3.3 to 17.6 meters.

	● Stairs and Escalators: They present a 30-degree incline 
and widths varying from 2.00 to 3.15 meters for fixed 
stairs and 1.59 meters for escalators.

Although 17 nodes were installed across the nine access 
points of the transport hub shown in Fig. 4, only eight sensor 
nodes were used to evaluate system accuracy in this work. 
For the stair/escalator scenarios, two groups of nodes, each 
consisting of 2 cameras, were assessed in areas H and I. In 
contrast, areas D and E were used to evaluate wide corridor 
scenarios. Area D consisted of a group of 2 nodes, while 
Area E had a group of 3 nodes, of which only two were used 
for the system evaluation.

4  Results and discussion

4.1  Metrics

This section is divided in two parts: metrics for object detec-
tion models and selected criteria for determining overall 
system accuracy. The evaluation process of object detection 
models involves the use of precision-recall based metrics 
[51]. First, precision (3) is computed as the ratio of true 
positive detections over the total number of detections for 
a specific label. On the other hand, recall (4) is defined as 
the proportion of objects from the target class identified by 
the model. While precision analyses the accuracy of pre-
dictions, recall represents the model’s capacity to identify 
positives.

Precision = TP

TP + FP
� (3)

Recall = TP

TP + FN
� (4)
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average of 43.6 seconds per image, while semi-automated 
labelling required an average of 26.8 seconds per image, 
saving 38.5% of labelling time.

The second training stage addressed model training on 
extended datasets. Several YOLOv8 models were trained, 
using ‘n’ and ‘s’ model sizes with image sizes of 640x640 
and 320x320, respectively. Both architectures were used for 
the escalator, corridor, and mixed datasets containing all 699 
images, resulting in a collection of six custom-trained mod-
els. No YOLOv8 architectures beyond ‘s’ size were used to 
maintain a minimum framerate in sensor nodes, allowing 
consistent tracking. This test is performed to obtain accu-
racy and inference speed data to help in the selection of the 
most appropriate model family.

Table  2 represents custom-trained models, including 
test set average precision and their framerates using Zero-
Term Imageless Tracking. Framerate tests showed that ‘n’ 
variants suffered higher FPS drops during high passenger 
density moments. Due to these results, only ‘s’ size models 
from YOLO families have been used in the following tests.

To evaluate the performance of the proposed system over 
custom-trained models and selected pre-trained models, 
videos from different installed sensor nodes were recorded. 
The software has been adapted to perform simulation over 
recorded videos, allowing for a robust comparison of model 
performance on the same data. Each study case is repre-
sented using four nodes divided into two groups of 2 nodes 
each. For the wide corridor study case, both sensor nodes 
from each group share an overlapping area. The videos were 
recorded during both crowded and non-crowded times, each 
one two minutes long. In the sensor node groups the vid-
eos were recorded synchronously. In total, this test dataset 
comprises 16 video clips (4 nodes, 2 traffic conditions, 2 
study cases), each lasting 120 seconds at 30 FPS with 1080p 
resolution.

Table 3 evaluates the performance of different trackers 
on each video using accuracy metric. Each video was pro-
cessed using the custom-trained YOLOv8s model trained on 
the dedicated dataset for each location. A graphical repre-
sentation of the results is provided in Fig. 5.

Simulation results show a similar performance across 
different trackers; however, the differences are more notice-
able in corridor scenarios. The colour histogram tracker 
achieves slightly higher average accuracy than non-visual 
short-term and zero-term imageless tracking. For that rea-
son, the colour histogram tracker has been selected as the 
tracking algorithm, and the following simulation results will 
include it. Once the most suitable tracker has been chosen, a 
similar process must be performed to identify the best pas-
senger detection model for each study case.

Table 4 offers an accuracy comparison between selected 
models in both study cases, evaluated during crowded and 

truth data is then transformed to the same system. Data com-
parison between ground truth and measured data for every 
minute is not a good practice as the time instant when the 
system increments the counter can be very different from 
the ground truth time. Occasionally, the tracking algorithm 
considers a tracked person lost and increments the counter 
several seconds after the passenger has disappeared from 
the image. Therefore, the relative error is computed by com-
paring gathered data for larger periods.

For each sensor node or sensor node group (in case 
of wide corridor scenarios), the measured passenger 
flow (PM ) is compared to ground truth data (PGT ) in 
both directions individually, obtaining the absolute error 
∆Pi = |PGT,i − PM,i|. Accuracy values shown in this 
work have been computed using (7), where i refers to any of 
both directions in any referenced camera or camera group.

Accuracy = 1 −
∑

i ∆Pi∑
i PGT,i

� (7)

4.2  Quantitative results

Custom model training was performed in two stages. In the 
first stage, a YOLOv8 model of ‘s’ size was trained for each 
scenario over the first iteration of both datasets with image 
sizes of 320x320. The escalator model achieved 97.7% 
mAP@0.5 on the test set; however, precision decreased dur-
ing crowded moments. Additional images were taken during 
crowded moments and labelled using a combination of the 
capabilities of bounding box prediction of the first model 
and human adjustment. For the same set of 20 images, this 
semi-automated procedure took 25.3 seconds per image, 
while full human labelling took 42.8 seconds per image. 
The same procedure was performed for the corridor dataset, 
where the initial model achieved 97.4% mAP@0.5 on the 
test set of the first iteration of the corridor dataset. Addi-
tional data was also added to address the low accuracy of 
the model during crowded moments, which is more critical 
in this scenario, where occlusion has a significantly higher 
impact. For this dataset, semi-automated labelling took 28.3 
seconds per image, while manual labelling took 44.3 sec-
onds per image. As a result, manual labelling required an 

Table 2  Results of YOLOv8 custom-trained models over test set
Dataset Model 

variant
Image size mAP@0.5 Average 

framerate
Escalator n 640×640 0.987 8.6
Escalator s 320×320 0.984 13.3
Corridor n 640×640 0.970 8.2
Corridor s 320×320 0.972 13.1
Mixed n 640×640 0.981 8.0
Mixed s 320×320 0.976 13.1
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the most reliable model for escalator scenarios, achieving 
0.9930 average accuracy. Meanwhile, YOLOv11s Mixed 
offers best results in the most challenging scenario, wide 
corridors, with an average accuracy of 0.9592.

In Fig. 6 we compare the evolution of accuracy across 
different flow rates for both scenarios, using the models that 
achieved the highest average accuracy. In wide corridor 
scenario, the increase in passenger flow has significantly 
greater impact than that observed in the escalator scenario. 
The accuracy drop in wide corridor scenario is mainly attrib-
uted to the interface between the adjacent sensors. In most 
failures passenger displacement was not detected within the 
domain of any camera.

non-crowded periods. The results indicate that the best pre-
trained model, Person Detection Retail 0013, achieves an 
accuracy of 0.8121 in escalator scenario and 0.8871 in the 
corridor scenario. However, custom-trained models sig-
nificantly outperform the best pre-trained model. During 
non-crowded periods, the best models trained on the mixed 
dataset show better results than the best models trained on 
the specific data, suggesting that greater model generaliza-
tion enhances performance across both scenarios. However, 
during peak hours, scenario-specific models demonstrate 
superior performance compared to more generalized mod-
els. On average, mixed models are more accurate than spe-
cific ones. Among the tested models, YOLOv8s Mixed is 

Table 4  System accuracy at different locations in crowded and non-crowded times
Model Escalator Weighted Corridor Weighted

Non-Crowded Crowded average Non-Crowded Crowded average
Person Detection Retail-0013 0.8564 0.7796 0.8121 0.8814 0.8905 0.8871
MobileNet-SSD 0.5028 0.4980 0.5000 0.8983 0.7612 0.8119
YOLOv5su-Escalator 0.9779 0.9878 0.9836 – – –
YOLOv5su-Corridor – – – 0.9407 0.9602 0.9530
YOLOv5su-Mixed 0.9945 0.9878 0.9906 0.9407 0.9453 0.9436
YOLOv8s-Escalator 0.9890 0.9878 0.9883 – – –
YOLOv8s-Corridor – – – 0.9407 0.9303 0.9341
YOLOv8s-Mixed 1.0000 0.9878 0.9930 0.9746 0.9353 0.9498
YOLOv11s-Escalator 0.9834 0.9918 0.9882 – – –
YOLOv11s-Corridor – – – 0.9576 0.9303 0.9404
YOLOv11s-Mixed 0.9834 0.9837 0.9836 0.9915 0.9403 0.9592
Passengers 180 245 – 118 201 –
Deep learning detection model comparison

Fig. 5  Accuracy evolution across flow rates in escalator and wide corridor scenarios

 

Tracker Escalator Corridor Weighted
Non-Crowded Crowded Non-Crowded Crowded average

Non-Visual Short-Term 0.9889 0.9755 0.9237 0.9154 0.9543
Zero-Term Imageless 0.9833 0.9837 0.9322 0.9353 0.9624
Colour Histogram 0.9833 0.9878 0.9407 0.9303 0.9637
Passengers 180 245 118 201 744

Table 3  System accuracy at 
different locations in crowded 
and non-crowded times using 
YOLOv8s scenario-specific 
models

Tracker algorithm comparison
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4.3  Qualitative results

To complement the quantitative analysis, Figs.  7 and  8 
present qualitative examples for the escalator and corridor 
scenarios, respectively. In both cases, results from the eight 
evaluated models are displayed for the same representative 
frame. These comparisons illustrate how pre-trained mod-
els consistently underperform compared to our custom-
trained models. In the escalator scenario, the selected frame 
includes people seated on the steps. Although this situation 

To complement the model evaluation, we also quantified 
the hardware resource overhead of the OAK-1 PoE. In the 
escalator scenario with YOLOv8s-Mixed, the device oper-
ated at a stable temperature of 55.9 ◦C, with LEON CPU 
usage of ≈26.3% (CSS) and DDR occupancy of ≈36.6% 
(122.1/333.3 MiB). These results indicate a moderate com-
putational load and memory footprint, supporting the feasi-
bility of continuous deployment in transport hubs.

Fig. 7  Qualitative results per model 
at escalator scenario
 

Fig. 6  Accuracy evolution across flow rates in escala-
tor and wide corridor scenarios
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4.4  Discussions

A comparison with other proposed passenger counting 
systems is performed in Table  5. Our final metrics were 
calculated as weighted averages across non-crowded and 
crowded scenarios. In addition to the accuracy metric, the 
F1 score was also calculated to perform a more appropriate 
comparison with other works. As the proposed systems in 
the literature focus on different locations with various spa-
tial conditions, a simple metric review is insufficient to com-
pare them. Works covered in this table have been analysed 
using precision, recall, accuracy and F1 score metrics. Pro-
posals [23], and [21] cover vertical camera points of view 
for a mono-camera approach, suitable for small entrances or 
narrow corridors. Authors of [26] measure passenger flow 

is not critical for flow measurement, since seated individu-
als are not moving, custom-trained models sometimes fail to 
detect them. Nevertheless, all passengers in motion are cor-
rectly identified. In the corridor scenario, the chosen frame 
depicts a complex scene with several individuals, including 
a woman pushing a stroller. Some models erroneously clas-
sify the stroller as a person or miss certain detections. The 
best-performing model in this scenario (YOLOv11s Mixed) 
successfully detects all passengers but also produces a false 
positive for the stroller. These examples highlight both the 
robustness of the proposed models and the residual limita-
tions under uncommon or ambiguous visual conditions.

Fig. 8  Qualitative results per model at corridor scenario
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Finally, the system developed in this paper provides 
very useful information for the planning and management 
of operations and services in critical mobility hubs such as 
multimodal transport interchanges. The Highway Capacity 
Manual [53] establishes six levels of the quality of service 
provided by transportation infrastructures, ranging from 
‘A’ (best) to ‘F’. In pedestrian corridors, stairs, and waiting 
areas of a transport interchange, this level of service at a 
given time is quantified based on their geometries and the 
number of passengers passing through or staying in them. 
This paper presents an end-to-end system that directly pro-
vides real-time pedestrian flow data; while the number of 
people in a space where all entries and exits are monitored 
is known through the following conservation law (8). In this 
equation pt and pt−1 represent the number of occupants 
inside an area at times t and t − 1, respectively, while et and 
lt denote the number of people entering or leaving the area 
between times t − 1 and t.

pt = pt−1 + et − lt� (8)

The measurements of people flows and area occupancies, 
along with their derived levels of service at an interchange 
station, can be used in real time for proactive management 
during daily operations. This includes providing updated 
information to users, guiding passenger movement with 
crowd control barriers, or adjusting escalator directions. 
Analysing the trends of these measurements also supports 
tactical and strategic planning for the station. Examples 
include optimizing the assignment of bus bays, placing ser-
vices and businesses, and determining their operation based 
on expected passenger flows and presence.

5  Conclusions

In this paper, we have proposed and developed an end-to-end 
system for passenger flow measurement in indoor environ-
ments using deep learning and computer vision techniques. 
The proposed system has demonstrated to be scalable and 
flexible, achieving average accuracy rates of 95.92% and 

congestion at metro platform screen doors using surveil-
lance video analysis and entropy-based evaluation of pas-
senger trajectories. In outdoor scenarios, a single sensor can 
monitor wide areas when located at high altitudes. The work 
[52] achieves a high F1 score using 2D LiDAR in outdoors 
environments. On the other hand, [24] measures passenger 
flow inside bus transport vehicles.

As presented in Table  5, our results show an F1 score 
of 0.9965, and an accuracy of 0.9930 for the escalator 
scenario, while in the wide corridor scenario the system 
achieves a F1 score of 0.9696 and an accuracy of 0.9592. 
The system variant on the escalator scenario achieves the 
best metrics. This performance gap can be attributed to the 
more constrained movements of passengers on escalators 
compared to the irregular trajectories in wide corridors, the 
occasional transitions between cameras, and the impact of 
the different sensor inclination angle. The more pronounced 
decrease observed in corridors at higher passenger flows 
(Fig. 6) further reflects the effect of occlusions and bound-
ary transitions, where overlapping passengers may prevent 
displacements from being correctly assigned to any camera 
domain. Although other works present better metrics than 
the corridor variant, these rely on a single sensor and does 
not address such complex environments. The multi-camera 
approach in our system allows complex scenario coverage, 
such as wide corridors in indoor locations where ceiling 
height restricts the width of the field of view. Additionally, 
some works only report accuracy, whereas the F1 score is a 
more precise metric, as it accounts for the balance between 
false positives and false negatives, which can otherwise dis-
tort accuracy.

Despite the advantages demonstrated by our multi-cam-
era approach, potential limitations should be considered. 
The calibration procedure used for defining the restriction 
lines that delimit boundaries between adjacent cameras 
relies on an assumed average passenger height of 1.65m. 
Consequently, passenger transitions between areas in these 
boundaries can remain undetected, particularly when height 
of individuals significantly deviates from the average. How-
ever, a quantitative assessment of the impact of height vari-
ability on error rates remains to be addressed.

Table 5  Comparison with other passenger counting systems
Work Scenario Passengers Sensor Precision Recall F1 Score Accuracy
[23] Narrow corridor 100 Single-Camera – – – 0.9900
[52] Outdoors 5075 2D-LiDAR 0.9935 0.9829 0.9882 –
[21] Corridor 300 Single-Camera – – – 0.9326
[26] Metro screen doors 13733 Single-Camera 0.9715 0.9797 0.9756 0.9916
[24] Bus interior 37 Single-Camera 0.8810 0.8605 0.8706 –
Ours–Escalator Escalator 426 Multi-Camera 1.0000 0.9930 0.9965 0.9930
Ours–Corridor Wide corridor 319 Multi-Camera 0.9902 0.9498 0.9696 0.9592
Results are based on the values reported in the corresponding publications. When a metric was not explicitly provided, it was derived from the 
available data, for example the F1 score was calculated from the reported precision and recall
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99.30%. It has maintained 94.03% accuracy in the cor-
ridor scenario with crowded flow, which is considered the 
worst-case scenario. The counting method defined for the 
shared areas between adjacent cameras allowed the system 
to maintain accuracy from 94.03% to 99.15% in complex 
locations such as high-traffic wide corridors.

During the development of the system, the semi-automatic 
labelling approach has been tested, and it demonstrated to 
reduce labelling time by 38.5%. The semi-automatic label-
ling process offered the possibility to feed the improved 
datasets only with the data the model failed to recognize. 
Also, the Colour Histogram tracking algorithm outper-
formed other tracking algorithms. The use of lightweight 
custom-trained models in comparison to pre-trained models 
achieved significant higher performance. This improvement 
in accuracy, from 7.21% to 18.09%, justifies the required 
effort to develop custom dataset and models. Besides, con-
ducted tests have shown that deep learning models trained 
on larger and generalized datasets are more suitable for the 
system than models trained on smaller but more specific 
datasets.

The end-to-end system was tested at the Moncloa Trans-
port Interchange, where 17 sensor nodes were installed at 
different locations covering a wide range of spatial condi-
tions. The acquired data demonstrated 63.666 passenger 
displacements in a single business day at the escalator study 
case and 386.207 in the same week. In the wide corridor 
scenario, 45.408 displacements were registered in a single 
business day, with the week concluding at 276.964 displace-
ments in that section.

Compared to other existing works, our solution improves 
accuracy in wide walkways and in environments with mul-
tiple outputs and inputs, where techniques based on single 
sensors or models trained on limited data have shown dif-
ficulties. In addition, the distributed vision approach miti-
gates occlusion issues and variations in lighting, key aspects 
in transport hubs where the flow of people is unpredictable.

Potential future works stemming from this proposed 
system include adapting it to new types of access points or 
alternative viewpoints, enabling broader coverage within 
transport hubs. For instance, using cameras with a top-down 
view could be beneficial in areas where the perspectives 
addressed in this paper may not be as effective. Another 
potential direction for future research is adapting the sys-
tem for use inside public transport vehicles, such as buses 
or trains, where modifications would be required to accom-
modate the system to a mobile environment. Addition-
ally, future work will include a quantitative analysis of the 
impact of passenger height variability on transition errors, 
in order to improve calibration procedures under diverse 
populations.
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