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Abstract

As urban populations continue to grow, managing and optimizing urban mobility has become increasingly complex,
especially in multimodal transport interchanges. Accurate passenger flow measurement has therefore become essential for
operators to mitigate congestion and improve service efficiency. This work proposes a scalable and flexible end-to-end sys-
tem designed to accurately measure and track passenger flow in real-time. The system integrates a distributed network of
Edge-Al sensor nodes with deep learning algorithms for local passenger detection and tracking, while a central processing
server aggregates node outputs to derive flow counts. This approach overcomes the limitations of traditional single-sensor
solutions by effectively handling occlusion and complex spatial configurations across multiple access points. Validated in a
high-transited transport hub, results show that the system achieves accuracy rates between 94.03% and 99.30% even under
crowded conditions with flow rates of 100 persons per minute, demonstrating its robustness and practical applicability in
dynamic, high-density environments.

Keywords End-to-end systems - Passenger flow measurement - Transport interchanges - Deep learning - Computer
vision

1 Introduction of remote workers have introduced greater dynamism and

complexity into individual mobility and multimodal trans-

Urban mobility is facing unprecedented challenges due to
the continuous increase in urban populations. The United
Nations (UN) [1] estimates that by 2050, 68% of the global
population will reside in urban areas. Optimizing and siz-
ing various modes of transportation in cities is a significant
challenge for public and private transportation management
institutions. Factors such as the increasing urban popula-
tion, migration to suburban areas due to real estate specu-
lation and rising housing prices, and the growing number
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portation connections. This demographic shift necessitates
optimizing multimodal transportation systems to ensure
efficient passenger flow and reduce congestion at transport
interchanges. Consequently, the transportation prediction
models previously employed, based on historical data and
static predictive models, are becoming increasingly com-
plex and ineffective, [2].

Transport interchanges are designed to facilitate multi-
modal transportation connections, enhancing accessibility
and connectivity among different metropolitan and urban
transportation systems [3]. These urban spaces increase
transportation efficiency and optimize routes by consoli-
dating various types of transport in one location. From a
user perspective, transport interchanges reduce waiting
times and offer recreational spaces and commercial activi-
ties, contributing to a better perception of the transporta-
tion service by the end-user [4]. Additionally, transport hubs
help reduce emissions in cities. For instance, concentrating
vehicles in underground hubs allows for the capture and
filtration of CO2 emissions and noise reduction, mitigating
the environmental impact of transportation and contributing
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to sustainability [5]. However, one of the main operational
challenges in these hubs is managing passenger flow, par-
ticularly during peak hours when overcrowding leads to
inefficiencies and delays. Ensuring optimal transit opera-
tions requires agile and automated systems for measuring
passenger flow that accurately reflect the congestion levels
in key areas of the transport interchange. Real-time mea-
surement of passenger flow transitioning from one mode
of transport (such as rail, metro, subway, bus stations) to
others (pedestrian, cyclist, private vehicle, taxi) will enable
dynamic planning and optimization of the transport hub.

Several methodologies have been proposed for passen-
ger flow measurement, ranging from manual counting to
sensor-based tracking solutions. Traditional pedestrian flow
monitoring systems typically rely on single-camera setups
or sensor-based counting, which are often limited to con-
trolled environments such as narrow corridors or specific
entry/exit points. These methods, while effective in specific
scenarios, struggle to provide reliable results in large, open
spaces within transport hubs, where high-density passenger
movements and occlusion effects complicate detection and
tracking.

Recent advancements in Artificial Intelligence (Al) [6]
and Computer Vision Systems [7] have enabled the devel-
opment of more sophisticated passenger detection and
counting solutions [8]. Deep learning architectures such
as Convolutional Neural Networks (CNN) [9], Recurrent
Neural Networks (RNN) [10], Long Short-Term Memory
(LSTM) [11, 12] and Vision Transformer (ViT) [13] have
demonstrated their effectiveness and robustness in automat-
ically counting and measuring passenger flows in various
scenarios. Some of the most used techniques include object
detection models specifically trained to identify passengers,
cars, trucks, and cyclists. However, most existing solutions
are constrained to single-sensor setups operating in narrow
or controlled environments. These systems often struggle
with scalability, occlusion, and performance degradation in
complex, high-density spaces like large transport hubs.

In recent years, several multi-sensor approaches have
been proposed to address these issues, leveraging data
fusion from multiple viewpoints to improve counting accu-
racy under challenging conditions such as severe occlusion,
illumination changes, and high crowd density. Examples
include transformer-based architectures for multi-view
crowd counting [14], modal adaptative spatial aware fusion
and propagation networks for multimodal vision crowd
counting [15], and multi-view linkage strategies for indoor
person counting [16]. Despite their improvements, many of
these approaches require high-bandwidth data transmission
to centralized servers or face limitations in adaptability to
heterogeneous layouts, which constrains their scalability in
large-scale deployments.
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To address these limitations, this work presents a novel
end-to-end system that combines Edge Artificial Intelli-
gence (Edge Al) with a distributed deep learning architec-
ture for real-time monitoring of passenger flow in transport
interchanges. The proposed approach combines adaptive
camera field-of-view segmentation with a robust re-identi-
fication strategy to accurately track individuals across over-
lapping sensor nodes. Unlike conventional methods, our
system is designed to operate effectively in complex spatial
configurations and under varying levels of congestion and
lighting. By executing inference locally on each sensor node
and exchanging only lightweight data, the proposed solu-
tion minimizes network load and latency, enabling efficient
scalability across diverse transport hub layouts. Its perfor-
mance is evaluated through extensive experimentation in a
real-world transport hub, demonstrating high accuracy, scal-
ability, and resilience. Furthermore, a comparative analysis
with existing approaches highlights the advantages of our
method in terms of precision, adaptability, and deployment
feasibility.

The remainder of this paper is structured as follows: Sec-
tion 2 reviews the related work in the field of passenger flow
monitoring and intelligent transport systems. Then, Section
3 provides a detailed description of the materials and meth-
ods used, including the hardware setup, the proposed count-
ing methodology, the deep learning models and techniques
employed, and the case study. Section 4 presents the evalu-
ation metrics, the experimental setup, the obtained results,
and a comprehensive discussion of key findings, including
comparison with other works. Finally, Section 5 concludes
the document by summarizing the main contributions, out-
lining practical implications, and proposing future research
directions to enhance and refine the system.

2 Related works

The development of automatic passenger counting (APC)
and flow measurement in specific areas of transportation
systems has attracted significant research attention in recent
years, focusing primarily on specific transportation environ-
ments such as subway platforms, bus boarding and alight-
ing areas, and high-density commercial spaces. Various
approaches have been proposed, from classic sensor-based
systems to advanced computer vision and artificial intelli-
gence solutions.

As traditional sensor-based solutions reached their limi-
tations, the field of passenger counting has increasingly
adopted computer vision approaches, enhanced by advances
in artificial intelligence [17]. These systems leverage visual
data captured by cameras and process it using Al models
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capable of detecting and tracking passengers with high
accuracy, even in complex and crowded environments.

Convolutional Neural Networks (CNNs) have been
widely used for people counting due to their ability to
extract complex spatial features from images. A prominent
example is RetailNet [18], which combines the traditional
RGB image with an additional layer that indicates the
probability that a pixel contains a person. This technique
improves the accuracy in estimating the number of people
present; however, its effectiveness is mainly limited to con-
trolled indoor spaces, which restricts its application in trans-
port exchangers with dynamic lighting and variable crowd
densities. To address these limitations, LRCN-RetailNet
[19], an advanced version that integrates Long-Short-Term
Convolutional Neural Networks (LRCN). This hybrid
architecture combines the capabilities of CNNs for spatial
feature extraction with Recurrent Neural Networks (RNNs)
to capture temporal coherence in video sequences, allow-
ing to more accurately predict the number of people by tak-
ing advantage of temporal information and better handling
occlusions and variations in people’s postures.

Based on CNN, YOLO models have been widely used
in passenger detection in public transport due to their abil-
ity to perform real-time detections with high accuracy.
These approaches have demonstrated good performance in
controlled environments such as buses, subway platforms,
and narrow corridors, often using single-camera systems
mounted in overhead or frontal positions [20—24]. In some
cases, multi-stage architectures combining feature extrac-
tion with object detection are used to improve accuracy in
dense areas [25].

Other works have focused on tracking and measuring
passenger flow or congestion using video surveillance and
trajectory analysis. For instance, entropy-based metrics
have been proposed to estimate congestion levels near plat-
form screen doors [26].

On the other hand, LSTMs, a variant of RNNs, are espe-
cially effective at capturing long-term dependencies on
sequential data. LSTM models have been used to predict
ridership in public transport areas [27, 28]. For example, a
model called NAPC (Neural Algorithm Passenger Count-
ing) is presented [11], based on an LSTM architecture for
counting passengers in public transportation during board-
ing and alighting operations. The model exploits the fea-
tures of LSTM architectures for long-term event memory
in time series. By leveraging 3D LiDAR data, this model
improves accuracy in tracking boarding and alighting pas-
sengers, offering an average relative error of 3%. However,
its reliance on LiDAR technology makes it costly and chal-
lenging to deploy in large-scale, multi-node environments
such as transport interchanges.

Inspired by advances in natural language processing,
Transformers have been adapted for computer vision tasks
and time series prediction in public transportation. A study
utilized a Transformer model based on LSTM to estimate
the flow of passengers in transfer corridors between inte-
grated hubs in an urban agglomeration [29]. This approach
demonstrated high adaptability and good performance in
passenger flow prediction, assisting in the efficient manage-
ment of multimodal transportation systems.

Deep learning-based architectures employed in intel-
ligent transportation systems are evolving towards end-to-
end systems [30-32]. This approach integrates all workflow
stages into a single architecture: data collection, preprocess-
ing, training, inference, and evaluation. For example, the
latest end-to-end architectures for autonomous driving [33]
consolidate all traditional phases of perception, localization,
navigation, and control into a unified system that receives
input from the vehicle’s sensors and generates control
actions for the vehicle’s manoeuvring elements [34].

Edge Artificial Intelligence (Edge Al) is transforming
passenger counting systems in public transportation by
enabling data processing directly on local devices such as
cameras, sensors, or onboard computers. This localized
approach reduces latency, enhances reliability in areas
with limited connectivity, and addresses privacy concerns
by keeping sensitive data on-device. By analyzing data at
the source, Edge Al facilitates real-time decision-making,
improves operational efficiency, and enhances passenger
safety and comfort. The integration of Edge Al into pub-
lic transit systems represents a significant advancement in
creating smarter, more responsive urban mobility solutions.

For instance, Parquery [35] developed a camera-based
passenger counting system for Swiss Federal Railways
(SBB CFF FFS), achieving 98% accuracy by analyzing
video streams from existing onboard security cameras using
Al algorithms. These cameras are standard RGB security
devices primarily intended for surveillance, and the infer-
ence is performed centrally on cloud or on-premise serv-
ers. A recent study [36] developed a passenger counter for
bus stops using YOLOvV3 executed on a Maixduino board
(RISC-V K210 microcontroller with Al accelerator). This
low-cost device performs real-time person detection at the
edge, demonstrating satisfactory accuracy in crowd estima-
tion. On the other hand, specialized companies like Outsight
[37] or Amorph Systems [38] offer Edge Al platforms for
LiDAR, capable of converting 3D data into flow metrics
instantly, allowing the measurement of queues and people
flows in airports and other transportation environments.
In urban transportation, passenger counting manufacturers
like DILAX [39] have introduced sensors on bus and train
doors to classify objects and count people with up to 98%
accuracy.
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Although these studies have made significant advances in
passenger detection and counting in specific scenarios, they
face limitations in adaptability and scalability across vari-
ous transportation environments. Most of these approaches
are designed for particular contexts and do not offer a com-
prehensive and flexible solution for measuring passenger
flow in different areas of a transport hub.

3 Materials and methods

This study evaluated the implementation and performance
of an advanced passenger flow measurement system in a
multimodal transportation environment. The case study
focused on the Moncloa transport interchange in Madrid, a
critical transportation node integrating metro services with
urban and interurban buses. The following sections detail
the materials used and the methods applied in the research.
The end-to-end solution is described, detailing the system’s
sensing elements, the central processing unit, the proposed
counting method, the deep learning techniques applied, and
finally, the case study.

3.1 End-to-end passenger flow measurement
system

An end-to-end system based on deep learning and computer
vision techniques was implemented to measure passenger
flow. This solution employs a distributed computer vision
system to (i) capture images in various areas of the trans-
port interchange, (ii) perform Edge Al based preprocess-
ing, and (iii) send the local passenger flow state to a local
processing server for post-processing. The system is based
on a distributed architecture, which uses intelligent sensor
nodes to capture and process real-time passenger movement

Fig. 1 Proposed end-to-end archi-

data. A local processing server integrates and processes the
data received from the sensor nodes. The processing server
identifies whether each movement corresponds to an entry
or exit and sends the final processed information regarding
passenger count and flow to the database.

Overall end-to-end architecture for measuring passenger
flow in any transit area is shown in Fig. 1. Local movement
data from each node is post-processed on the local process-
ing server by dedicated instances for each measurement
zone. This post-processing results in a simplified counting
data, representing the number of passengers crossing in
each direction within the monitored areas. This data is then
sent to the transport interchange management system.

3.1.1 Sensor nodes and sensor node groups

In our proposed solution, sensor nodes are responsible for
the system’s heaviest workload. As depicted in Fig. 1, each
node integrates image acquisition, deep learning-based pas-
senger detection, passenger tracking, and lightweight script-
based processing.

Each sensor node is equipped with an OAK-1 PoE cam-
era, featuring an IMX378 sensor with a maximum resolu-
tion of 4056x3040 pixels and a processing capacity of 4
TOPS (Tera Operations per Second), of which 1.4 TOPS
are dedicated to Al inference. This enables real-time execu-
tion of Al algorithms directly at the capture site (Edge Al
[40]). In addition to image acquisition, this model supports
deep learning-based object detection, object tracking and
lightweight Python script execution. This reduces the com-
putational load on the local processing server, ensuring a
scalable and efficient implementation.

The processing pipeline at a sensor node involves the fol-
lowing steps:
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1. Image acquisition: Continuous capture of RGB images
from the monitored area.

2. Passenger detection: Passengers are identified within
the node’s field of view using a lightweight deep-learn-
ing object detection model.

3. Passenger tracking: Detected passengers are tracked
across various areas within the node’s field of view
using an object tracker.

4. Movement detection: The field of view of the node is
subdivided in different areas, facilitating thereby the
recognition of passenger movements within the local
environment of the node.

In more complex scenarios or those with higher passenger
traffic, multiple sensor nodes can be grouped into a sen-
sor node group (as shown on the left side of Fig. 1). This
approach enables coordinated management of larger areas,
ensuring complete coverage while avoiding duplication in
passenger detection and counting.

The sensor nodes and sensor node groups provide as out-
put passenger movement data in a local reference system
unique to each sensor node.

3.1.2 Local processing server

Once the visual data is gathered by the sensor nodes and
partially processed to obtain local movement data, it is
transmitted to the local processing server. The server plays
a critical role in the system by (1) connecting and configur-
ing the sensor nodes, (2) integrating the collected data from
individual nodes within a group and, (3) processing local
displacements to generate the final passenger counts for
each measurement zone.

The refined data is sent to the transport interchange
management system and used in centralized management
processes. This data can be stored in a local or cloud-based
database, used for route optimization and planning, dis-
played on information screens within the transport hub, or
even used to trigger alerts for the operators in the event of
critical situations.

In our implementation and testing, an industrial-grade
PC with 8 PoE ports was used as the local processing server,
along with two PoE switches. However, the low computa-
tional load required allows for the use of lightweight com-
puting devices in combination with the correspondent PoE
switch networking.

3.1.3 Proposed counting method
This subsection details the proposed method, divided into

three parts: camera field of view subdivision, displacement
detection, and entry/exit counting.

Camera field of view subdivision To detect passenger move-
ments accurately, we employed an approach based on subdi-
viding each sensor node’s field of view into multiple areas.
These areas are used to track and categorize passenger
movements across the observed measurement zones. This
subdivision is configured and adjusted based on the envi-
ronment, allowing areas to be reduced or collapsed if neces-
sary to simplify the analysis.

In the basic field of view subdivision template, each

sensor node divides its field of view into five areas: upper,
lower, left, centre and right (Fig. 2(a)). This template is
conceived as a configurable design parameter rather than a
fixed structure, and the number of areas can be reduced to
the minimum required for accurate movement estimation.
The subdivision defines the resolution at which movements
are measured: more areas allow finer discrimination of
directions, while fewer areas provide a simpler configura-
tion without affecting the consistency of the calculations.
In practice, most use cases require only two or three areas,
while the full five-area configuration is reserved for more
complex flows. Figure 2(b) illustrates a specific use case
where the subdivision has been customized for a particular
zone, adjusting the size and number of areas according to
the environment. In that case, the left area of the node is
used to handle the non-vertical movement, where upper and
left areas represent the same movement direction.
As the camera field of view can contain non-interest places,
the addition of restriction measurement areas is also sup-
ported. The use of these restriction areas is also intended to
avoid measurement errors due to overlapping fields of view
from neighbouring cameras (Fig. 2(c)).

When two nodes cover adjacent areas, it is essential that
their subdivision configurations are consistently aligned to
avoid discrepancies in tracking passengers moving horizon-
tally from one node to another. As shown in Fig. 2(c), both
nodes must be perfectly aligned in orientation, and their
areas should maintain the same vertical size. This ensures
that any movement of passengers between nodes is accu-
rately captured in the corresponding area without duplica-
tion or omission in the count. To maintain same camera
orientation, fixed angle supports were used during sensor
installation procedure. With this configuration, strict tem-
poral synchronization is not required, as transitions between
nodes are consistently resolved by the spatial alignment of
the subdivided areas.

To ensure the proper functioning of the restriction areas,
the delimiting lines are positioned on a plane parallel to the
ground at an average height of 0.825m, corresponding to the
centre of the passengers’ bounding box, based on an aver-
age person height of 1.65m. This approach ensures smooth
transitions for lateral passenger movements between nodes.

@ Springer
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Fig.2 (a) Representation of the
five-area subdivision template
shown in green lines. (b) Specific
area subdivision for a particular
use case. (¢) Adjacent cameras
using restricted measurement areas
(shaded in red)

Centre

(a) Standard subdivision

-

(b) Customized subdivision

Darsenas/L'cks 20 - 39

Table 1 Example of a node origin—destination counting matrix. Each
row represents the area where a passenger was first detected, and each
column corresponds to the area where the passenger was last observed

Origin \Destination Up Down Left Centre  Right
Up 0 0 0 0 0
Down 0 0 0 0 0
Left 0 0 0 1 0
Centre 0 0 0 0 1
Right 0 0 0 0 0

In this example, the matrix encodes one displacement from the left to
the centre area and another from the centre to the right area

A calibration procedure was carried out using sticks marked
at 0.825m to delimitate restriction areas within each camera
field of view.

Displacement detection For each node, all movement data
is aggregated within a fixed time window into a 5x 5 origin—
destination matrix (M), where rows represent the area of the
first detected position and the columns match the area of
the final position. Each matrix cell represents the measured
number of passenger displacements throughout the defined
areas. This data is sent from the node to the local processing
server. Inference speed becomes critical as low frame rates
can lead to passenger disappearance without detecting its
transit through a specific area, especially in the boundaries.
An example of this counting matrix can be found in Table 1,

@ Springer

(c) Restricted measurement areas

representing one displacement from the left to the centre
area and another one from the centre to the right area.

Entry and exit counting Once the nodes have transmitted
the origin—destination matrices M to the local processing
server, the server derives entry/exit events using the pre-
assigned role of each area (“In”, “Out”, or “Unassigned”).
Each time a passenger moves from one area to another
within a node’s field of view, the server evaluates the ori-
gin and destination roles and increments the corresponding
counter:

e Entry: Incremented when a passenger moves from an
“Out” or “Unassigned” area to an “In” area, indicating
the passenger has entered the place of interest.

e Exit: Incremented when a passenger moves from an
“In” or “Unassigned” area to an “Out” area, signifying
that the passenger has left the monitored place.

e None: Movements into “Unassigned” areas are ignored
for counting.

Formal modelling For each sensor node, M[i,j] stores the
number of movements from area i to area j. Based on the
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predefined area roles, passenger entries (E) and exits (X) are
then computed according to (1) and (2), respectively.

E= > M, j]
i € {Out,Unassigned} ©)
j€{In}
X = > M, j]
i€ {In} ()

j € {Out,Unassigned}

This process ensures that only relevant movements are
counted as entries or exits, minimizing unnecessary data
accumulation and enhancing the system’s accuracy.

3.1.4 Deep learning models for passenger movement
detection

The core part of the end-to-end system is the deep learn-
ing model used in the sensor nodes. The model’s average
precision and inference time are key factors determining
overall sensor performance. The selected OAK-1-PoE cam-
eras are only compatible with the “.blob” MyriadX model
format, which requires any used model to be converted into
this format. The camera processors achieve 1.4 TOPS of Al
processing power, restricting the use of medium and heavy
models. It also supports built-in object trackers, including
trackers such as Short-Term KCF Tracking (Kernelized
Correlation Filter), Non-Visual Short-Term Tracking, Zero-
Term Imageless Tracking and Colour Histogram Tracking
[41-43].

In this work, pre-trained and custom-trained passenger
detection models were compared. Using custom-trained
deep learning models is highly beneficial, specifically in
interiors where camera and light conditions are consistent.
However, a comparison was conducted to identify whether
the differences in accuracy are significant enough to jus-
tify the additional effort required to generate and label the
dataset and train the custom models. Custom models can

Fig.3 Example frames from the
custom datasets: (a) Escalator data-
set and (b) Corridor dataset

i
|

(a) Escalator Dataset

be trained for the defined working distances and optimized
for the most common passenger sizes relative to the camera
image at measurement zones. On the other hand, pre-trained
models provide a fast implementation with high generaliza-
tion for detection tasks.

The training process requires a large amount of data to
be captured and labelled following an object detection for-
mat. This process can be carried out in two ways: manual
or semi-automated. Semi-automated labelling can be per-
formed using a pre-trained model to generate temporary
bounding boxes requiring subsequent human adjustment.
However, the data collection and labelling process in both
methods can be time-consuming, and the amount of needed
data and computational resources are not available for
everyone. In those cases, the implementation of pre-trained
models is highly beneficial. The selected light-weight per-
son detection pre-trained models were MobileNet SSD [44,
45] and Person Detection Retail 0013 [46], both obtained
from the OpenVINO toolkit [47].

Datasets Two distinct custom datasets were recorded for
the specific scenarios analysed in this work. One dataset was
acquired for the escalator access case study, while another
was collected for wide corridor scenarios. Additionally, a
mixed dataset combining data from both scenarios was gen-
erated to evaluate whether a more generalized model offers
advantages over the scenario-specific ones.

The first escalator dataset consisted of 432 manually
labelled images from an escalator access scenario with
resolutions of 1920x1080, as illustrated in Fig. 3(a). The
photos were taken from 4 installed sensor nodes at differ-
ent heights, two of them at 3.8m height with at 650 inclina-
tion and a 4.1m distance, while the rest of the cameras were
installed at a 2.9m height, 650 inclination, and 2.3m dis-
tance from the measurement section. Because of the label-
ling criteria, the generated bounding box had to cover the
whole target using the smallest size possible for highly vis-
ible passengers. On the other hand, highly occluded persons
had their bounding box cropped at the height where most of

(b) Corridor Dataset
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the body is occluded. The dataset was shuffled and then sub-
divided into three sets: train (70%), validation (15%), and
test (15%). Due to the low performance on crowded pas-
senger flows, a second set of data was captured and labelled,
including data with high passenger density. The additional
data contained 63 images from the same cameras taken at
crowded moments and subdivided using the same propor-
tions as the first dataset, which resulted in a second version
of the dataset with a total of 495 images containing 1893
passengers. All the extra images were labelled using semi-
automatic labelling procedures, applying manual labelling
adjustment to the pre-processed labels generated by a model
trained on the first 432 images. Initially, more images were
taken to expand the dataset; however, only 63 images were
selected to be included in the extended dataset because the
first model performed poorly on them.

A different dataset was acquired from wide corridor scenar-
ios, collecting 178 images from eight sensor nodes in two
wide corridors (Fig. 3(b)). The first corridor is 17.6m wide,
requiring five nodes to cover the entire section. Installed
cameras leverage the presence of columns to reduce over-
lapping areas at the measurement zones. Nodes were located
ata 3.1m height, and columns left spaces of 3.9m, 6.6m, and
6.6m wide between them. In this scenario, most cameras
used a 600 inclination, whereas the camera covering the
3.9m wide section used 62.50 to allow full coverage. While
the original intention was to locate the cameras from 2.25m
to 2.5m distance to the measurement section, local restric-
tions forced camera placement at 4.15m from the measure-
ment section. The second corridor is 10m wide, where 6.8m
of the measurement section is shared between two cameras
and the remaining space is covered by a single node due to
the presence of a ramp. The three cameras of this sensor
node group located in this corridor had a height of 2.7m, a
600 inclination, and a distance to the measurement section
of 1.56m. The first image set was expanded with 98 semi-
automatic labelled images, resulting in a total size of 276
images containing 1297 passengers.

Model architecture Selecting a deep learning architecture
to solve an object recognition problem is a complex task
that depends on multiple variables, such as the need for real-
time processing, the size of the available dataset, the com-
putational capacity of the system, the accuracy required,
and existing implementations.

Object recognition architectures fall into two main cat-
egories: (1) Two-Stage Detectors (e.g. R-CNN, Faster
R-CNN and Mask R-CNN); (2) One-Stage Detectors
(e.g. YOLO, SSD and RetinaNet). In this research work,
single-stage detectors were chosen due to their suitability
for real-time tasks. These architectures perform bounding

@ Springer

box prediction and classes in a single pass of the network,
which optimizes speed. Within this category, the YOLOVS,
YOLOVS and YOLOV11 [48-50] versions were specifically
selected. This choice is justified because, chronologically,
each version incorporates significant improvements in its
design and capabilities. All the selected architectures have
implementations (‘n’, ‘s’, ‘m’, ‘I’, and ‘x”) with different
numbers of parameters, which has facilitated their deploy-
ment in Edge Al devices, maximizing the flexibility and
applicability of the system.

Given the deployment constraints previously outlined
(MyriadX .blob compilation and the need to sustain a mini-
mum on-node frame rate to maintain tracking continuity),
we restricted the search to detectors that are both compatible
with the OAK-1 PoE sensor and capable of achieving suf-
ficient frame rate. While recent transformer-based detectors
(e.g., DETR, Deformable-DETR, RT-DETR) perform well
on GPU, they are not supported on MyriadX and therefore
fall out of scope for on-node evaluation in this work.

Mdels in this work were trained using [48—50] the
Ultralytics v8.3.51 framework, which implements the
YOLO family using the PyTorch v2.1.1 library. Using this
framework each YOLO model is initialized from COCO-
pretrained weights provided by Ultralytics and fine-tuned
on our datasets. The training was conducted in a NVIDIA
RTX3070 with 8 GB of VRAM for 1000 epochs with a batch
size of 32, image resolution of 320x320 pixels, initial learn-
ing rate of 0.01, momentum of 0.937, 3 warmup epochs, and
optimizer set to auto. The learning rate followed the default
linear decay schedule in Ulatralytics, decreasing from the
initial value (0.01) to the final learning rate across training.
An early stop criterion was applied, terminating training if
no improvement was observed over the last 100 epochs.
Additionally, data augmentation techniques were applied
during the training process to improve model generaliza-
tion. The augmentation criteria included HSV variations
with a 1.5% maximum HUE change, 70% for saturation and
40% maximum brightness variation. Other modifications
included image translation in both axes up to 10% of the
image size, scale variations up to 50%, a 50% chance of
horizontal flipping, and mosaic augmentation.

3.2 Case study: moncloa transport interchange

The case study is located at the Moncloa transport inter-
change in Madrid, Spain’s capital. The Moncloa transport
hub is a major transportation interchange that integrates
metro services with urban and interurban buses.

With an area of 46,000 m2, 34 bus platforms, 32 shops,
1,500 underground parking spaces, and 280,000 passengers
circulating daily, this transport hub has become one of the
most important in Madrid due to its ability to manage a large



An end-to-end distributed deep learning system for real-time passenger flow measurement in transport... Page90of 18 1078

volume of passengers each day. This makes it an ideal test- @ Stairs and Escalators: To facilitate access between dif-
ing environment for this study. ferent levels of the hub and efficiently manage verti-

This transport interchange is divided into three islands cal passenger flow, the hub includes both escalator and
and several underground levels, featuring extensive facili- fixed stairs:

ties, including:
— Escalators: The escalators have a 30-degree incline

o Metro Platforms: The interchange connects with two and a total width of 1.59 meters.
main metro lines of the city. The 115-meter-long board- — Fixed Stairs: These stairs have a 30-degree incline,
ing and alighting platforms accommodate trains of up widths ranging from 2.00 to 3.15 meters, and ceiling
to six cars. heights varying from 2.8 to 4.8 meters.

o Bus Terminals: The bus station is located on level -1,
at an elevation of 651 meters above sea level. It has 15 e (Commercial and Recreational Areas: The interchange

bays, each with a 12-meter-long parking space. The ter- includes 1,500 m2 of commercial areas offering shops,
minals handle urban and interurban buses, approximate- restaurants, and other services, enhancing the user expe-
ly 1,500 buses daily. rience and making use of waiting times.

e Passenger Walkways and Corridors: The interchange
features wide corridors and walkways that allow pas-  The proposed end-to-end system has been tested on Island
sengers to move smoothly between different areas, min- 1 (Fig. 4(a)) of the Moncloa transport interchange and its

imizing waiting time and improving accessibility. The  lower level (Fig. 4(b)). Island 1 has five access points: two
passenger corridors have ceiling heights ranging from  leading to the exterior, one to the Metro platforms, and two
2.8 to 3.2 meters and widths varying from 3.3 to 17.6  connecting the island to the lower level. The lower level
meters. has three access points: two connecting to Island 1 and one

Fig. 4 Deployed sensor nodes at
the Moncloa transport hub in (a)
Island 1 and (b) the lower level.
A, C, and G correspond to single
nodes on stairs/escalators, B, H,
and I to node groups on stairs/
escalators, and D, E, and F to node
groups in wide corridors

e Segovia
e Segovia

Asturias/ Galicia
Ledn/Valladolid/Palengha

N
AWz
L s

L NN

(b) Lower level
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leading to a connection with the Metro and the rest of the
hub. The access points to Island 1 include wide corridors and
stairs or escalators, posing a challenge due to the horizontal
and vertical movements of passengers and the potential for
significant occlusion in the field of view of the cameras.

As illustrate in Fig. 4, the sensor nodes (represented in
red and labeled with letters A—I) were strategically placed
at key points in the transport hub to maximize coverage
and minimize occlusion. Specifically, two area types were
addressed:

e Wide Corridors: Due to their size, these presented sig-
nificant challenges, with ceiling heights between 2.8 and
3.2 meters and widths ranging from 3.3 to 17.6 meters.

e Stairs and Escalators: They present a 30-degree incline
and widths varying from 2.00 to 3.15 meters for fixed
stairs and 1.59 meters for escalators.

Although 17 nodes were installed across the nine access
points of the transport hub shown in Fig. 4, only eight sensor
nodes were used to evaluate system accuracy in this work.
For the stair/escalator scenarios, two groups of nodes, each
consisting of 2 cameras, were assessed in areas H and 1. In
contrast, areas D and E were used to evaluate wide corridor
scenarios. Area D consisted of a group of 2 nodes, while
Area E had a group of 3 nodes, of which only two were used
for the system evaluation.

4 Results and discussion
4.1 Metrics

This section is divided in two parts: metrics for object detec-
tion models and selected criteria for determining overall
system accuracy. The evaluation process of object detection
models involves the use of precision-recall based metrics
[51]. First, precision (3) is computed as the ratio of true
positive detections over the total number of detections for
a specific label. On the other hand, recall (4) is defined as
the proportion of objects from the target class identified by
the model. While precision analyses the accuracy of pre-
dictions, recall represents the model’s capacity to identify
positives.

TP
Precision — — ~ 1+
recision TP+ FP 3)
TP
l= —-——
Reca TP+ PN @)

@ Springer

e TP (True Positive): Number of detections correctly clas-
sified as the target class.

e FP (False Positive): Number of detections being mis-
classified as the target class.

e FN (False Negative): Number of undetected target class
objects.

Due to the trade-off between precision and recall, a robust
model requires the consideration of other metrics derived
from both. The Precision-Recall curve is a graphical rep-
resentation of the trade-off between precision and recall,
which shows when they are unbalanced. When the curve
maintains high levels of precision across all levels of recall,
it is considered an indicator of model robustness. Since dif-
ferent threshold values can be used to consider a detection
valid, multiple precision-recall curves are usually drawn
with different thresholds. Average Precision (AP) is a sin-
gle-value metric that summarizes precision-recall quality
for a specific model class. However, the most used metric
in object detection is the Mean Average Precision (mAP),
which extends the concept of AP to all classes supported
by the model, resulting in an overall measure of the mod-
el’s quality. It is very common to encounter this metric as
mAP@0.5, representing that every AP has been computed
using an IoU (Intersection over Union) threshold of 0.5.
This value indicates that a detection is correct if the overlap-
ping area between the ground truth and the detection bound-
ing boxes is higher than 50% of their combined area.
Another widely used metric that combines precision, and
recall is the F1 score. This metric is defined as the harmonic
mean of precision and recall values, as shown in (5). The F1
score is considered reliable only when the different classes
in a dataset are balanced. The F1 score is a particular case of
a more general function called F, defined in (6)). Higher /3
values in Fg provide more weight to the recall value in the
function, whereas lower 3 values give higher importance
to precision. This metric is not restricted to evaluating deep
learning models; it can be applied to more complex systems.

2 2 - Precision - Recall
F= L1 ~ “Precision + Recall ®)
Recall Precision

Precision - Recall
32 - Precision + Recall

Fg=(1+p% (6)

The first step for computing overall system performance is
gathering ground truth data. The ground truth data acquisi-
tion process involved manual person counting in the whole
access; for that matter, the counting was performed using a
push-button-based smartphone app, which saves the push
event time. As the installed system saves a single (in, out)
vector with all gathered data in the same period, the ground



An end-to-end distributed deep learning system for real-time passenger flow measurement in transport...

Page 11 of 18 1078

truth data is then transformed to the same system. Data com-
parison between ground truth and measured data for every
minute is not a good practice as the time instant when the
system increments the counter can be very different from
the ground truth time. Occasionally, the tracking algorithm
considers a tracked person lost and increments the counter
several seconds after the passenger has disappeared from
the image. Therefore, the relative error is computed by com-
paring gathered data for larger periods.

For each sensor node or sensor node group (in case
of wide corridor scenarios), the measured passenger
flow (Pys) is compared to ground truth data (Pgr) in
both directions individually, obtaining the absolute error
AP, = |Pgr; — Payi|. Accuracy values shown in this
work have been computed using (7), where ¢ refers to any of
both directions in any referenced camera or camera group.

2. AP

Accuracy =1 - =*2—
> Par.i

(7

4.2 Quantitative results

Custom model training was performed in two stages. In the
first stage, a YOLOVS model of ‘s’ size was trained for each
scenario over the first iteration of both datasets with image
sizes of 320x320. The escalator model achieved 97.7%
mAP@0.5 on the test set; however, precision decreased dur-
ing crowded moments. Additional images were taken during
crowded moments and labelled using a combination of the
capabilities of bounding box prediction of the first model
and human adjustment. For the same set of 20 images, this
semi-automated procedure took 25.3 seconds per image,
while full human labelling took 42.8 seconds per image.
The same procedure was performed for the corridor dataset,
where the initial model achieved 97.4% mAP@0.5 on the
test set of the first iteration of the corridor dataset. Addi-
tional data was also added to address the low accuracy of
the model during crowded moments, which is more critical
in this scenario, where occlusion has a significantly higher
impact. For this dataset, semi-automated labelling took 28.3
seconds per image, while manual labelling took 44.3 sec-
onds per image. As a result, manual labelling required an

Table 2 Results of YOLOv8 custom-trained models over test set

Dataset Model Image size mAP@0.5 Average
variant framerate
Escalator n 640 %640 0.987 8.6
Escalator S 320x320 0.984 13.3
Corridor n 640%x 640 0.970 8.2
Corridor s 320%x320 0.972 13.1
Mixed n 640x640 0.981 8.0
Mixed s 320%x320 0.976 13.1

average of 43.6 seconds per image, while semi-automated
labelling required an average of 26.8 seconds per image,
saving 38.5% of labelling time.

The second training stage addressed model training on
extended datasets. Several YOLOvV8 models were trained,
using ‘n’ and ‘s’ model sizes with image sizes of 640x640
and 320x320, respectively. Both architectures were used for
the escalator, corridor, and mixed datasets containing all 699
images, resulting in a collection of six custom-trained mod-
els. No YOLOVS architectures beyond ‘s’ size were used to
maintain a minimum framerate in sensor nodes, allowing
consistent tracking. This test is performed to obtain accu-
racy and inference speed data to help in the selection of the
most appropriate model family.

Table 2 represents custom-trained models, including
test set average precision and their framerates using Zero-
Term Imageless Tracking. Framerate tests showed that ‘n’
variants suffered higher FPS drops during high passenger
density moments. Due to these results, only ‘s’ size models
from YOLO families have been used in the following tests.

To evaluate the performance of the proposed system over
custom-trained models and selected pre-trained models,
videos from different installed sensor nodes were recorded.
The software has been adapted to perform simulation over
recorded videos, allowing for a robust comparison of model
performance on the same data. Each study case is repre-
sented using four nodes divided into two groups of 2 nodes
each. For the wide corridor study case, both sensor nodes
from each group share an overlapping area. The videos were
recorded during both crowded and non-crowded times, each
one two minutes long. In the sensor node groups the vid-
eos were recorded synchronously. In total, this test dataset
comprises 16 video clips (4 nodes, 2 traffic conditions, 2
study cases), each lasting 120 seconds at 30 FPS with 1080p
resolution.

Table 3 evaluates the performance of different trackers
on each video using accuracy metric. Each video was pro-
cessed using the custom-trained YOLOv8s model trained on
the dedicated dataset for each location. A graphical repre-
sentation of the results is provided in Fig. 5.

Simulation results show a similar performance across
different trackers; however, the differences are more notice-
able in corridor scenarios. The colour histogram tracker
achieves slightly higher average accuracy than non-visual
short-term and zero-term imageless tracking. For that rea-
son, the colour histogram tracker has been selected as the
tracking algorithm, and the following simulation results will
include it. Once the most suitable tracker has been chosen, a
similar process must be performed to identify the best pas-
senger detection model for each study case.

Table 4 offers an accuracy comparison between selected
models in both study cases, evaluated during crowded and

@ Springer
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Table 3 System accuracy at Tracker Escalator Corridor Weighted
dlizerent locatzlorzls;n crow@ed Non-Crowded Crowded Non-Crowded Crowded average
and non-crowded times using -

YOLOVSs scenario-specific Non-Visual Short-Term 0.9889 0.9755 0.9237 0.9154 0.9543
models Zero-Term Imageless 0.9833 0.9837 0.9322 0.9353 0.9624
Colour Histogram 0.9833 0.9878 0.9407 0.9303 0.9637
Tracker algorithm comparison Passengers 180 245 118 201 744
m Non-Crowded M Crowded
1
0,95
> 09
< 0gs
038
0,75
Escalator Non-Visual Escalator Zero-Term Escalator Color Corridor Non-Visual ~ Corridor Zero-Term Corridor Color
Short-Term Imageless Histogram Short-Term Imageless Histogram
Fig.5 Accuracy evolution across flow rates in escalator and wide corridor scenarios
Table 4 System accuracy at different locations in crowded and non-crowded times
Model Escalator Weighted Corridor Weighted
Non-Crowded Crowded average Non-Crowded Crowded average
Person Detection Retail-0013 0.8564 0.7796 0.8121 0.8814 0.8905 0.8871
MobileNet-SSD 0.5028 0.4980 0.5000 0.8983 0.7612 0.8119
YOLOvS5su-Escalator 0.9779 0.9878 0.9836 - - -
YOLOvS5su-Corridor - - - 0.9407 0.9602 0.9530
YOLOvS5su-Mixed 0.9945 0.9878 0.9906 0.9407 0.9453 0.9436
YOLOVS8s-Escalator 0.9890 0.9878 0.9883 - - -
YOLOv8s-Corridor - - - 0.9407 0.9303 0.9341
YOLOv8s-Mixed 1.0000 0.9878 0.9930 0.9746 0.9353 0.9498
YOLOv11s-Escalator 0.9834 0.9918 0.9882 - - -
YOLOv11s-Corridor - - - 0.9576 0.9303 0.9404
YOLOv11s-Mixed 0.9834 0.9837 0.9836 0.9915 0.9403 0.9592
Passengers 180 245 - 118 201 —

Deep learning detection model comparison

non-crowded periods. The results indicate that the best pre-
trained model, Person Detection Retail 0013, achieves an
accuracy of 0.8121 in escalator scenario and 0.8871 in the
corridor scenario. However, custom-trained models sig-
nificantly outperform the best pre-trained model. During
non-crowded periods, the best models trained on the mixed
dataset show better results than the best models trained on
the specific data, suggesting that greater model generaliza-
tion enhances performance across both scenarios. However,
during peak hours, scenario-specific models demonstrate
superior performance compared to more generalized mod-
els. On average, mixed models are more accurate than spe-
cific ones. Among the tested models, YOLOv8s Mixed is

@ Springer

the most reliable model for escalator scenarios, achieving
0.9930 average accuracy. Meanwhile, YOLOvlls Mixed
offers best results in the most challenging scenario, wide
corridors, with an average accuracy of 0.9592.

In Fig. 6 we compare the evolution of accuracy across
different flow rates for both scenarios, using the models that
achieved the highest average accuracy. In wide corridor
scenario, the increase in passenger flow has significantly
greater impact than that observed in the escalator scenario.
The accuracy drop in wide corridor scenario is mainly attrib-
uted to the interface between the adjacent sensors. In most
failures passenger displacement was not detected within the
domain of any camera.
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Fig.6 Accuracy evolution across flow rates in escala-

tor and wide corridor scenarios
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Accuracy

Fig. 7 Qualitative results per model
at escalator scenario

(g) YOLOv11s Escalator

To complement the model evaluation, we also quantified
the hardware resource overhead of the OAK-1 PoE. In the
escalator scenario with YOLOv8s-Mixed, the device oper-
ated at a stable temperature of 55.9 °C, with LEON CPU
usage of ~26.3% (CSS) and DDR occupancy of ~36.6%
(122.1/333.3 MiB). These results indicate a moderate com-
putational load and memory footprint, supporting the feasi-
bility of continuous deployment in transport hubs.

—@— Corridor scenario

\

—@— Escalator scenario

60 70 80 90

Passengers per minute

100 110 120 130

(h) YOLOv11s Mixed

4.3 Qualitative results

To complement the quantitative analysis, Figs. 7 and 8
present qualitative examples for the escalator and corridor
scenarios, respectively. In both cases, results from the eight
evaluated models are displayed for the same representative
frame. These comparisons illustrate how pre-trained mod-
els consistently underperform compared to our custom-
trained models. In the escalator scenario, the selected frame
includes people seated on the steps. Although this situation
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(g) YOLOv11s Mixed

Fig. 8 Qualitative results per model at corridor scenario

is not critical for flow measurement, since seated individu-
als are not moving, custom-trained models sometimes fail to
detect them. Nevertheless, all passengers in motion are cor-
rectly identified. In the corridor scenario, the chosen frame
depicts a complex scene with several individuals, including
a woman pushing a stroller. Some models erroneously clas-
sify the stroller as a person or miss certain detections. The
best-performing model in this scenario (YOLOv11s Mixed)
successfully detects all passengers but also produces a false
positive for the stroller. These examples highlight both the
robustness of the proposed models and the residual limita-
tions under uncommon or ambiguous visual conditions.
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4.4 Discussions

A comparison with other proposed passenger counting
systems is performed in Table 5. Our final metrics were
calculated as weighted averages across non-crowded and
crowded scenarios. In addition to the accuracy metric, the
F1 score was also calculated to perform a more appropriate
comparison with other works. As the proposed systems in
the literature focus on different locations with various spa-
tial conditions, a simple metric review is insufficient to com-
pare them. Works covered in this table have been analysed
using precision, recall, accuracy and F1 score metrics. Pro-
posals [23], and [21] cover vertical camera points of view
for a mono-camera approach, suitable for small entrances or
narrow corridors. Authors of [26] measure passenger flow
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Table 5 Comparison with other passenger counting systems

Work Scenario Passengers Sensor Precision Recall F1 Score Accuracy
[23] Narrow corridor 100 Single-Camera - - - 0.9900
[52] Outdoors 5075 2D-LiDAR 0.9935 0.9829 0.9882 -

[21] Corridor 300 Single-Camera - - - 0.9326
[26] Metro screen doors 13733 Single-Camera 0.9715 0.9797 0.9756 0.9916
[24] Bus interior 37 Single-Camera 0.8810 0.8605 0.8706 -
Ours—Escalator Escalator 426 Multi-Camera 1.0000 0.9930 0.9965 0.9930
Ours—Corridor Wide corridor 319 Multi-Camera 0.9902 0.9498 0.9696 0.9592

Results are based on the values reported in the corresponding publications. When a metric was not explicitly provided, it was derived from the
available data, for example the F1 score was calculated from the reported precision and recall

congestion at metro platform screen doors using surveil-
lance video analysis and entropy-based evaluation of pas-
senger trajectories. In outdoor scenarios, a single sensor can
monitor wide areas when located at high altitudes. The work
[52] achieves a high F1 score using 2D LiDAR in outdoors
environments. On the other hand, [24] measures passenger
flow inside bus transport vehicles.

As presented in Table 5, our results show an F1 score
of 0.9965, and an accuracy of 0.9930 for the escalator
scenario, while in the wide corridor scenario the system
achieves a F1 score of 0.9696 and an accuracy of 0.9592.
The system variant on the escalator scenario achieves the
best metrics. This performance gap can be attributed to the
more constrained movements of passengers on escalators
compared to the irregular trajectories in wide corridors, the
occasional transitions between cameras, and the impact of
the different sensor inclination angle. The more pronounced
decrease observed in corridors at higher passenger flows
(Fig. 6) further reflects the effect of occlusions and bound-
ary transitions, where overlapping passengers may prevent
displacements from being correctly assigned to any camera
domain. Although other works present better metrics than
the corridor variant, these rely on a single sensor and does
not address such complex environments. The multi-camera
approach in our system allows complex scenario coverage,
such as wide corridors in indoor locations where ceiling
height restricts the width of the field of view. Additionally,
some works only report accuracy, whereas the F1 score is a
more precise metric, as it accounts for the balance between
false positives and false negatives, which can otherwise dis-
tort accuracy.

Despite the advantages demonstrated by our multi-cam-
era approach, potential limitations should be considered.
The calibration procedure used for defining the restriction
lines that delimit boundaries between adjacent cameras
relies on an assumed average passenger height of 1.65m.
Consequently, passenger transitions between areas in these
boundaries can remain undetected, particularly when height
of individuals significantly deviates from the average. How-
ever, a quantitative assessment of the impact of height vari-
ability on error rates remains to be addressed.

Finally, the system developed in this paper provides
very useful information for the planning and management
of operations and services in critical mobility hubs such as
multimodal transport interchanges. The Highway Capacity
Manual [53] establishes six levels of the quality of service
provided by transportation infrastructures, ranging from
‘A’ (best) to ‘F’. In pedestrian corridors, stairs, and waiting
areas of a transport interchange, this level of service at a
given time is quantified based on their geometries and the
number of passengers passing through or staying in them.
This paper presents an end-to-end system that directly pro-
vides real-time pedestrian flow data; while the number of
people in a space where all entries and exits are monitored
is known through the following conservation law (8). In this
equation p; and p;_; represent the number of occupants
inside an area at times f and ¢ — 1, respectively, while e; and
l; denote the number of people entering or leaving the area
between times ¢ — 1 and ¢.

pt=pr—1t+e— 1l (®)

The measurements of people flows and area occupancies,
along with their derived levels of service at an interchange
station, can be used in real time for proactive management
during daily operations. This includes providing updated
information to users, guiding passenger movement with
crowd control barriers, or adjusting escalator directions.
Analysing the trends of these measurements also supports
tactical and strategic planning for the station. Examples
include optimizing the assignment of bus bays, placing ser-
vices and businesses, and determining their operation based
on expected passenger flows and presence.

5 Conclusions

In this paper, we have proposed and developed an end-to-end
system for passenger flow measurement in indoor environ-
ments using deep learning and computer vision techniques.
The proposed system has demonstrated to be scalable and
flexible, achieving average accuracy rates of 95.92% and
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99.30%. It has maintained 94.03% accuracy in the cor-
ridor scenario with crowded flow, which is considered the
worst-case scenario. The counting method defined for the
shared areas between adjacent cameras allowed the system
to maintain accuracy from 94.03% to 99.15% in complex
locations such as high-traffic wide corridors.

During the development of the system, the semi-automatic
labelling approach has been tested, and it demonstrated to
reduce labelling time by 38.5%. The semi-automatic label-
ling process offered the possibility to feed the improved
datasets only with the data the model failed to recognize.
Also, the Colour Histogram tracking algorithm outper-
formed other tracking algorithms. The use of lightweight
custom-trained models in comparison to pre-trained models
achieved significant higher performance. This improvement
in accuracy, from 7.21% to 18.09%, justifies the required
effort to develop custom dataset and models. Besides, con-
ducted tests have shown that deep learning models trained
on larger and generalized datasets are more suitable for the
system than models trained on smaller but more specific
datasets.

The end-to-end system was tested at the Moncloa Trans-
port Interchange, where 17 sensor nodes were installed at
different locations covering a wide range of spatial condi-
tions. The acquired data demonstrated 63.666 passenger
displacements in a single business day at the escalator study
case and 386.207 in the same week. In the wide corridor
scenario, 45.408 displacements were registered in a single
business day, with the week concluding at 276.964 displace-
ments in that section.

Compared to other existing works, our solution improves
accuracy in wide walkways and in environments with mul-
tiple outputs and inputs, where techniques based on single
sensors or models trained on limited data have shown dif-
ficulties. In addition, the distributed vision approach miti-
gates occlusion issues and variations in lighting, key aspects
in transport hubs where the flow of people is unpredictable.

Potential future works stemming from this proposed
system include adapting it to new types of access points or
alternative viewpoints, enabling broader coverage within
transport hubs. For instance, using cameras with a top-down
view could be beneficial in areas where the perspectives
addressed in this paper may not be as effective. Another
potential direction for future research is adapting the sys-
tem for use inside public transport vehicles, such as buses
or trains, where modifications would be required to accom-
modate the system to a mobile environment. Addition-
ally, future work will include a quantitative analysis of the
impact of passenger height variability on transition errors,
in order to improve calibration procedures under diverse
populations.
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