Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/151915
Campo DC Valoridioma
dc.contributor.authorSalas, Eduardoen_US
dc.contributor.authorRosique, Franciscaen_US
dc.contributor.authorBenavente Ponce, Juanen_US
dc.contributor.authorRivadeneira, Ana Mariaen_US
dc.contributor.authorNavarro, Pedro J.en_US
dc.date.accessioned2025-11-17T17:08:40Z-
dc.date.available2025-11-17T17:08:40Z-
dc.date.issued2025en_US
dc.identifier.issn0924-669Xen_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/151915-
dc.description.abstractAs urban populations continue to grow, managing and optimizing urban mobility has become increasingly complex, especially in multimodal transport interchanges. Accurate passenger flow measurement has therefore become essential for operators to mitigate congestion and improve service efficiency. This work proposes a scalable and flexible end-to-end system designed to accurately measure and track passenger flow in real-time. The system integrates a distributed network of Edge-AI sensor nodes with deep learning algorithms for local passenger detection and tracking, while a central processing server aggregates node outputs to derive flow counts. This approach overcomes the limitations of traditional single-sensor solutions by effectively handling occlusion and complex spatial configurations across multiple access points. Validated in a high-transited transport hub, results show that the system achieves accuracy rates between 94.03% and 99.30% even under crowded conditions with flow rates of 100 persons per minute, demonstrating its robustness and practical applicability in dynamic, high-density environments.en_US
dc.languageengen_US
dc.relation.ispartofApplied Intelligenceen_US
dc.sourceApplied Intelligence [ISSN 0924-669X], v. 55 (16), (Noviembre 2025)en_US
dc.subject3327 Tecnología de los sistemas de transporteen_US
dc.subject.otherEnd-To-End Systemsen_US
dc.subject.otherPassenger Flow Measurementen_US
dc.subject.otherTransport Interchangesen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherComputer Visionen_US
dc.titleAn end-to-end distributed deep learning system for real-time passenger flow measurement in transport interchangesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10489-025-06954-9en_US
dc.identifier.scopus105021087652-
dc.identifier.isi001610610200001-
dc.contributor.orcid0000-0003-0433-8941-
dc.contributor.orcid0000-0001-8367-2934-
dc.contributor.orcid0000-0002-3311-8414-
dc.contributor.orcid0000-0003-1578-0188-
dc.contributor.orcid0000-0002-7266-3124-
dc.contributor.authorscopusid58119291100-
dc.contributor.authorscopusid7102147042-
dc.contributor.authorscopusid57192699179-
dc.contributor.authorscopusid56494508300-
dc.contributor.authorscopusid59346213900-
dc.identifier.eissn1573-7497-
dc.identifier.issue16-
dc.relation.volume55en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages18en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Salas, E-
dc.contributor.wosstandardWOS:Navarro, PJ-
dc.contributor.wosstandardWOS:Rosique, F-
dc.contributor.wosstandardWOS:Benavente, J-
dc.contributor.wosstandardWOS:Rivadeneira, AM-
dc.date.coverdateNoviembre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr1,193-
dc.description.jcr3,4-
dc.description.sjrqQ2-
dc.description.jcrqQ2-
dc.description.scieSCIE-
dc.description.miaricds11,0-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptDepartamento de Ingeniería Civil-
crisitem.author.fullNameBenavente Ponce, Juan-
Colección:Artículos
Adobe PDF (3,67 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.