Identificador persistente para citar o vincular este elemento:
				https://accedacris.ulpgc.es/jspui/handle/10553/15085
			
		| Título: | Gender classification in large databases | Autores/as: | Ramón-Balmaseda, Enrique  Lorenzo-Navarro, Javier Castrillón-Santana, Modesto  | 
Clasificación UNESCO: | 120304 Inteligencia artificial | Palabras clave: | Gender Recognition Local Binary Pattern Large Facial Image Databases  | 
Fecha de publicación: | 2012 | Publicación seriada: | Lecture Notes in Computer Science | Conferencia: | 17th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2012 | Resumen: | In this paper, we address the challenge of gender classi - cation using large databases of images with two goals. The rst objective is to evaluate whether the error rate decreases compared to smaller databases. The second goal is to determine if the classi er that provides the best classi cation rate for one database, improves the classi cation results for other databases, that is, the cross-database performance. | URI: | https://accedacris.ulpgc.es/handle/10553/15085 | ISBN: | 9783642332746 | ISSN: | 0302-9743 | DOI: | 10.1007/978-3-642-33275-3_9 | Fuente: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 7441 LNCS, p. 74-81 | 
| Colección: | Actas de congresos | 
Citas SCOPUSTM   
 
										
									
									
		
			
				
					
						18
					
					
				
			
			
		
		
								
										actualizado el 08-jun-2025
									
								Visitas
96
										actualizado el 27-ene-2024
									
								Descargas
120
										actualizado el 27-ene-2024
									
								Google ScholarTM
							Verifica
						Altmetric
Comparte
Exporta metadatos
Este elemento está sujeto a una licencia Licencia Creative Commons
			
		
