Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/15085
Título: Gender classification in large databases
Autores/as: Ramón-Balmaseda, Enrique 
Lorenzo-Navarro, Javier 
Castrillón-Santana, Modesto 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Gender Recognition
Local Binary Pattern
Large Facial Image Databases
Fecha de publicación: 2012
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 17th Iberoamerican Congress on Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP 2012 
Resumen: In this paper, we address the challenge of gender classi - cation using large databases of images with two goals. The rst objective is to evaluate whether the error rate decreases compared to smaller databases. The second goal is to determine if the classi er that provides the best classi cation rate for one database, improves the classi cation results for other databases, that is, the cross-database performance.
URI: http://hdl.handle.net/10553/15085
ISBN: 9783642332746
ISSN: 0302-9743
DOI: 10.1007/978-3-642-33275-3_9
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[ISSN 0302-9743],v. 7441 LNCS, p. 74-81
Colección:Actas de congresos
miniatura
Postprint
Adobe PDF (531,89 kB)
Vista completa

Citas SCOPUSTM   

18
actualizado el 01-dic-2024

Visitas

96
actualizado el 27-ene-2024

Descargas

120
actualizado el 27-ene-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons