Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/15081
Título: An study on ear detection and its applications to face detection
Autores/as: Castrillón-Santana, Modesto 
Lorenzo-Navarro, Javier 
Hernandez-Sosa, Daniel 
Clasificación UNESCO: 120304 Inteligencia artificial
Palabras clave: Face detection
Facial feature detection
Ear detection
Viola- Jones
Fecha de publicación: 2011
Publicación seriada: Lecture Notes in Computer Science 
Conferencia: 14th Conference of the Spanish Association for Artificial Intelligence (CAEPIA 2011) 
14th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2011 
Resumen: OpenCV includes di erent object detectors based on the Viola-Jones framework. Most of them are specialized to deal with the frontal face pattern and its inner elements: eyes, nose, and mouth. In this paper, we focus on the ear pattern detection, particularly when a head pro le or almost pro le view is present in the image. We aim at creating real-time ear detectors based on the general object detection framework provided with OpenCV. After training classi ers to detect left ears, right ears, and ears in general, the performance achieved is valid to be used to feed not only a head pose estimation system but also other applications such as those based on ear biometrics.
URI: http://hdl.handle.net/10553/15081
ISBN: 9783642252730
ISSN: 0302-9743
DOI: 10.1007/978-3-642-25274-7_32
Fuente: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) [ISSN 0302-9743], v. 7023 LNCS, p. 313-322
Colección:Actas de congresos
miniatura
Postprint
Adobe PDF (1,64 MB)
Vista completa

Citas SCOPUSTM   

11
actualizado el 10-nov-2024

Citas de WEB OF SCIENCETM
Citations

5
actualizado el 25-feb-2024

Visitas

96
actualizado el 29-jun-2024

Descargas

991
actualizado el 29-jun-2024

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Este elemento está sujeto a una licencia Licencia Creative Commons Creative Commons