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Abstract. OpenCV includes different object detectors based on the
Viola-Jones framework. Most of them are specialized to deal with the
frontal face pattern and its inner elements: eyes, nose, and mouth. In
this paper, we focus on the ear pattern detection, particularly when a
head profile or almost profile view is present in the image. We aim at
creating real-time ear detectors based on the general object detection
framework provided with OpenCV. After training classifiers to detect
left ears, right ears, and ears in general, the performance achieved is
valid to be used to feed not only a head pose estimation system but also
other applications such as those based on ear biometrics.
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1 Introduction

Among the wide literature on the face detection problem, the well known Viola-
Jones face detector [21] has received lots of attention. This interest is justified
not only thanks to its remarkable performance, but also due to its availability
to a large community via the OpenCV library [13, 14].

However, Viola and Jones [21] designed a general object detection framework.
The approach is therefore suitable to be applied not only to the face pattern.
Indeed, several researchers have already trained classifiers to detect different
targets, and distributed to the community in the current OpenCV release [7,
18]. Among those available classification cascades, it is observed that most of
them are focused on the frontal face and its inner facial features (eyes, mouth
and nose). There are two exceptions within the available classifiers in OpenCV,
but also related with human detection, these are the profile face detector [2],
and the head and shoulders [12] detector. Both are particularly less reliable
than those designed for the frontal pose [3].
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In this paper, we are interested in putting in practice the Viola-Jones frame-
work to automatically detect the ear pattern in images. It is evident that the
ear pattern, as present in Figure 1, would be visible only if it is not occluded
and the head is not frontal, i.e. the head presents a profile (or almost) pose.

Automatic ear detection is indeed an useful ability in the human machine in-
teraction scenario. Its detection can for instance be applied in conjunction with
a face detector to better fit a 3D head model onto an individual, achieving better
pose estimation [16,20]. Additionally, the ear pattern has been used in biome-
trics by its own or as supplementary cue [10]. Therefore, its live and automatic
detection would be of interest to multimodal recognition based on ear and face
images [4,9].

To reach this objective we have adopted, as mentioned above, the Viola-Jones
framework. Indeed the adaboost approach has already been used to design ear
detectors [1,8]. The main difference with both works is that we are employing
standard tools integrated with OpenCV to create the cascade. Our final aim is
to make the classifiers available, including them in OpenCV, to serve as baseline.
We consider that this is an advantage as previous researchers have provided their
results but not released their detectors to the community. Abaza et al. are also
concerned about reducing the training time. We will see later that the processing
time is not so high using the standard OpenCV commands. Additionally, we
present a larger experimental setup, in comparison to [8] and less restricted, in
terms of controlled imagery, if compared to [1].

Section 2 summarizes the Viola-Jones detection framework. Section 3 des-
cribes the data used for the experimental setup. Results and conclusions are
presented in sections 4 and 5, respectively.

2 Viola-Jones general object detection framework

Creating a detector with the Viola-Jones framework requires: 1) a large training
set (at least some thousands) of roughly aligned images of the object to detect or
target (positive samples), and 2) another even larger set of images not containing
the target (negative samples). This setup is a tedious, slow and costly phase, that
has been summarized in different brief tutorials, e.g. [19].

Both images sets are used to train a boosted cascade of weak and simple
classifiers. The main idea behind this framework is to apply less effort in pro-
cessing the image. Each weak classifier is fast and has the ability to provide a
high detection ratio, with a small true reject ratio, i.e. it is able to detect the
target most of the time. However, a weak classifier is not able to reject all the
patterns without interest. Indeed, it would be enough if it is able to reject half
of them. In terms of execution time, the resulting cascade of classifiers would be
much faster than a strong classifier with similar detection rates.

Each weak classifier uses a set of Haar-like features, acting as a filter chain.
Only those image regions that manage to pass through all the stages of the
detector are considered as containing the target. For each stage in the cascade,
see Figure 2, a separate subclassifier is trained to detect almost all target objects
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Fig. 1. FERET dataset [17] ear annotation examples. If mostly visible, the ear pattern
has been annotated manually rotated in faces rotated along the vertical axis (out-of-
plane rotation.)

while rejecting a certain fraction of those non-object patterns that have been
incorrectly accepted by previous stage classifiers.

Theoretically for a cascade of K independent weak classifiers, the resulting
detection rate, D, and the false positive rate, F, of the cascade are given by the
combination of each single stage classifier rates:

K K
D =]]d F=]]# (1)
i=1 i=1

Each stage classifier is selected considering a combination of features which
are computed on the integral image, see Figure 3a-b. These features are remi-
niscent of Haar wavelets and early features of the human visual pathway such
as center-surround and directional responses, see Figure 3c. The implementation
[15] integrated in OpenCV [7] extended the original feature set [21].

With this approach, given a 20 stage detector designed for refusing at each
stage 50% of the non-object patterns (target false positive rate) while falsely
eliminating only 0.1% of the object patterns (target detection rate), its expected
overall detection rate is 0.999%° ~ 0.98 with a false positive rate of 0.52° ~
0.9 %1075, This schema allows a high image processing rate, due to the fact that
background regions of the image are quickly discarded, while spending more time
on promising object-like regions. Thus, the detector designer chooses the desired
number of stages, the target false positive rate and the target detection rate
per stage, achieving a trade-off between accuracy and speed for the resulting
classifier.
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Fig. 2. Typical training procedure for a Viola-Jones’ based classifier. Each classifier
stage is obtained using positive and negative samples accepted by the previous stage.
Adapted from [3].

Given an input image, the resulting classifier will report the presence and
location, in terms of rectangular container, of the object(s) of interest in the
image.
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Fig. 3. a) The Integral Image stores integrals over subregions of the image. b) The sum
of pixel values in A is (24, y4) — (22,y2) — (23, y3) + (1, y1) [5] . c) Features prototypes
considered in the implementation integrated in OpenCV [13,15].

The availability of different tutorials, e.g. [19], guides OpenCV users to col-
lect, annotate and structure the data before building the different classifier train-
ing. To test their performance, they must later be tested with an independent
set of images.
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3 Datasets

The imagery used to train and evaluate the ear detection performance is the
FERET dataset [17]. Even when this dataset is mainly known in the face recog-
nition literature, it is used in this paper to evaluate the ear detection perfor-
mance. The dataset contains two subsets that we refer below as FERETCD1
and FERETCD2.

The dataset includes frontal, profile and inbetween faces. For our purpose,
we have considered just the profile or almost profile images contained in the
thumbnails folder of both subsets. Each ear present in those images, has been
manually annotated defining a container with four points as seen in Figure 1.

As the reader can observe in Figure 1, some annotated ears will correspond
to the left and some to the right ear. We have created three different classifiers
to detect ears (left ear, right ear, just ear). For that purpose, we have flipped all
the annotated images in FERETCDI to build a larger training set suitable to
train the different patterns. Those annotated images contained in FERETCD1
constitute the set of positive samples. The number of annotated images in both
sets is reflected in Table 1. The set of negative samples (also been flipped to avoid
any bias) is composed mainly of large wallpaper images that do not contain the
target pattern. These datasets are used to train the different ear detectors.

The FERETCD2 subset is used for evaluation. The resulting classifiers pro-
vide detection results, that must be compared with the annotation data to deter-
mine the classifier goodness. The criterion adopted to consider an ear detection,
eq, as true detection, will observe the overlap with the annotated container, e,,
and the distance between both containers:

correct detection = overlap OR close (2)
where overlap is
true if 2% > 05
l = Qq 3
overtap {false otherwise ®)

being a, and ag4 the area of the annotated and detected container. And close is
defined as
(4)

close — 4 true if dist(ed, €a) < 0.25 X eq_width
false otherwise

where dist refers to the distance between both container centers.

Table 1. Total number of images contained in each subset, and the number of ears
annotated in each set (observe that not all the images present a profile or almost profile
pose). Hidden ears have not been annotated, but some partially hidden ears have been
approximately estimated.

Set Total number of images|Annotated ears
FERETCD1 5033 2798
FERETCD2 4394 1947
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4 Experimental results

4.1 Ear detection performance

As mentioned above, we have used the FERETCD1 and the negative images
sets to train the different target classifiers, while the FERETCD2 set has been
used to evaluate both classifiers.

Giving some training details, on one side, the number of positive samples
used to create each classifier based on the OpenCV implementation was 3000
(6000 for the ear detector). The reader can observe that this number is slightly
larger than the number of positive samples indicated in Table 1. Indeed, the
utility integrated in OpenCV to compile the file of positive samples creates
additional training samples making use of reduced affine transformations. On
the other side, 10000 was the number fixed as negative samples. The rest of the
training parameters employed were mainly default values, excepting the pattern
size selected, 12 x 20, and the tag indicating that the target pattern is not
symmetric.

The training time to compute each 20 stages classifiers, using a 2.66Ghz
processor, was around 30 hours for the left and right ear detectors, and 40 hours
for the general ear detector.

The detection results achieved for the FERETCD2 set are presented in Fi-
gure 4a. For each classifier, its receiver operating characteristic (ROC) curve
was computed applying first the 20 stages of each classifier, and four variants
reducing its number of stages (18, 16, 14 an 12 respectively). Theoretically, this
action must increase both correct, D, and false, F, detection rates. The precise
positive and negative detection rates for both specialized classifiers using 20, 18,
16 and 14 stages are presented in Table 2.
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Detection rate
Detection rate

0.85 0.85

-O-Left ear
—+—Right ear -©-Left ear

-©-Ear 08 —+Right ear
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Fig.4. (a) Left and right ear detection results, training with CD1 and testing with
CD2. (b) Left and right ear detection results, training with CD1 and CD2, and testing
with CD2.
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Observing the figure, it is evident that the specialized detectors, i.e. those
trained to detect only the left or only the right ear, perform better. For similar
detection error rates, e.g. 5% the detection is around 92% and only 84% for the
ear detector. The precise results presented in the table for the left and right ear
detectors, suggest that both detectors do not perform exactly the same. Indeed,
the left ear detector seems to have a lower false detection rate for similar positive
detection rate. This effect can be justified by the fact that the false negative
samples selection integrates some random decision during the training phase.

In summary, both specialized classifiers perform remarkably well for this sce-
nario, while keeping a low false detection rate. In fact both detectors locate
correctly more than 92% of the target patterns presenting an error rate around
5%. They are therefore robust ear detectors in the experimental setup. To pro-
cess the 1947 images contained in the FERETCD2 set, even when their size is
not homogeneous, the average processing time was 45 and 48 milliseconds res-
pectively for the right and left detector. Figure 4b, presents the results achieve
training with both subsets and testing with the FERETCD2 set.

In addition, we have tested the detectors with real video using a 640 x 480
webcam achieving close to real-time performance. This is achieved even when
no temporal information is used to speed up the processing. The detectors are
therefore valid to be applied for interactive purposes.

Table 2. Detection results using 20, 18, 16 and 14 stages.

Approach |Detection rate|False detection rate
Left ear (20) 0.8644 0.0015
Left ear (18) 0.9019 0.0067
Left ear (16) 0.9240 0.0252
Left ear (16) 0.9435 0.1469
Right ear (20) 0.8290 0.0015
Right ear (18) 0.8588 0.0041
Right ear (16) 0.8998 0.0185
Right ear (16) 0.9271 0.0632

4.2 Face detection improvement

To illustrate the interest of the facial features detection ability in conjunction
with a face detector, we have performed a brief analysis on the the FDDB (Face
Detection Data Set and Benchmark) dataset [11]. This dataset has been de-
signed to study the problem of real face detection. The dataset contains a 5171
annotated faces taken from the Faces in the Wild dataset [6].

On that dataset we have applied face detection using two different approaches:

— Face detection using an available in OpenCV detector.
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Table 3. Face detection results on the FDDB set

Approach Detection rate|False detection rate
Face detection 71.55 6.57
Face detection and 6 FFs 65.94 1.85

— Face detection using an available in OpenCV detector, but confirming the
presence of at least 2 inner facial features (eyes, nose, mouth, and ears) using
the facial feature detectors present in OpenCV, plus our ear detectors.

The additional restriction imposed forces the location for a face candidate
(detected by a face detector) of at least two inner facial features. The main
benefit is that the risk of false detections is reduced as reflected in Table 3.
However, the main benefit of the ear detection inclusion, is that when an ear
is detected it additionally provides an evidence about the head pose, this is
illustrated in Figure 5.

5 Conclusions

Observing the reliable classifiers trained by other researchers, we have used the
Viola-Jones framework to train ear detectors. After the slow task of data ga-
thering and training, they have been tested using the FERET database. Their
respective detection results achieved have been presented suggesting a high de-
tection rate. The specialized left and right ear detector performances evidences a
detection rate larger than 92%, remarkably larger than the performance achieved
by a general ear detector. These detectors are additionally reliable to be used in
real-time applications employing standard webcams. These classifiers are there-
fore useful to any application requiring ear detection. For instance, we have ap-
plied the detector to the FDDB set to test the ability to suggest a lateral view.
Other applications such as ear biometric systems, require an ear registration step
that is now fast and simple.

We expect to explore further the combination of these classifiers with other
facial feature detectors to improve face detection performance based on the com-
bination of the evidence accumulation provided by inner facial feature detection.
Such a detector would be more robust to slight rotations and occlusions.

Both classifiers reported in Figure 4b are now included in the OpenCV li-
brary. therefore other researchers can take them as baseline for comparison and
improvement. In the next future, we will consider the addition of slightly rotated
ear patterns to the positive set with the objective to analyze if a more sensitive
classifier can be built.
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