Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/149403
Campo DC Valoridioma
dc.contributor.authorMonzón Verona, José Miguelen_US
dc.contributor.authorGarcia-Alonso Montoya, Santiagoen_US
dc.contributor.authorSantana Martin, Francisco Jorgeen_US
dc.date.accessioned2025-10-06T13:49:32Z-
dc.date.available2025-10-06T13:49:32Z-
dc.date.issued2025en_US
dc.identifier.issn2079-9292en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/149403-
dc.description.abstractThis study presents an innovative bimodal approach for laboratory partial discharge (PD) analysis using a YOLOv8-based convolutional neural network (CNN). The main contribution consists, first, in the transformation of a conventional DDX-type electrical detector into a smart and autonomous data source. By training the CNN, a system capable of automatically reading and interpreting the data from the detector display—discharge magnitude and applied voltage—is developed, achieving an average training accuracy of 0.91 and converting a passive instrument into a digitalized and structured data source. Second, and simultaneously, an optical visualization system captures direct images of the PDs with a high-resolution camera, allowing for their morphological characterization and spatial distribution. For electrical voltages of 10, 13, and 16 kV, PDs were detected with a confidence level of up to 0.92. The fusion of quantitative information intelligently extracted from the electrical detector with qualitative characterization from optical analysis offers a more complete and robust automated diagnosis of the origin and severity of PDs.en_US
dc.languageengen_US
dc.relation.ispartofElectronics (Switzerland)en_US
dc.subject3306 Ingeniería y tecnología eléctricasen_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherPartial dischargesen_US
dc.subject.otherDielectric oilen_US
dc.subject.otherElectrical sensoren_US
dc.subject.otherOptical sensoren_US
dc.subject.otherFault diagnosisen_US
dc.subject.otherPredictive maintenanceen_US
dc.subject.otherArtificial intelligenceen_US
dc.subject.otherYOLOv8en_US
dc.titleFusion of Electrical and Optical Methods in the Detection of Partial Discharges in Dielectric Oils Using YOLOv8en_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/electronics14193916en_US
dc.identifier.scopus105019060054-
dc.identifier.isi001593601300001-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid26531597500-
dc.contributor.authorscopusid35106946100-
dc.contributor.authorscopusid26531766200-
dc.identifier.eissn2079-9292-
dc.identifier.issue19-
dc.relation.volume14en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages32en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Monzón-Verona, JM-
dc.contributor.wosstandardWOS:García-Alonso, S-
dc.contributor.wosstandardWOS:Santana-Martín, FJ-
dc.date.coverdateOctubre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,644
dc.description.jcr2,6
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,5-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUMA: Instrumentación avanzada-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Eléctrica-
crisitem.author.deptGIR IUMA: Instrumentación avanzada-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0001-9694-269X-
crisitem.author.orcid0000-0003-4389-0632-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameMonzón Verona, José Miguel-
crisitem.author.fullNameGarcia-Alonso Montoya, Santiago-
crisitem.author.fullNameSantana Martin, Francisco Jorge-
Colección:Artículos
Adobe PDF (8,74 MB)
Vista resumida

Visitas

107
actualizado el 15-ene-2026

Descargas

14
actualizado el 15-ene-2026

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.