Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/jspui/handle/10553/149403
| Campo DC | Valor | idioma |
|---|---|---|
| dc.contributor.author | Monzón Verona, José Miguel | en_US |
| dc.contributor.author | Garcia-Alonso Montoya, Santiago | en_US |
| dc.contributor.author | Santana Martin, Francisco Jorge | en_US |
| dc.date.accessioned | 2025-10-06T13:49:32Z | - |
| dc.date.available | 2025-10-06T13:49:32Z | - |
| dc.date.issued | 2025 | en_US |
| dc.identifier.issn | 2079-9292 | en_US |
| dc.identifier.other | WoS | - |
| dc.identifier.uri | https://accedacris.ulpgc.es/jspui/handle/10553/149403 | - |
| dc.description.abstract | This study presents an innovative bimodal approach for laboratory partial discharge (PD) analysis using a YOLOv8-based convolutional neural network (CNN). The main contribution consists, first, in the transformation of a conventional DDX-type electrical detector into a smart and autonomous data source. By training the CNN, a system capable of automatically reading and interpreting the data from the detector display—discharge magnitude and applied voltage—is developed, achieving an average training accuracy of 0.91 and converting a passive instrument into a digitalized and structured data source. Second, and simultaneously, an optical visualization system captures direct images of the PDs with a high-resolution camera, allowing for their morphological characterization and spatial distribution. For electrical voltages of 10, 13, and 16 kV, PDs were detected with a confidence level of up to 0.92. The fusion of quantitative information intelligently extracted from the electrical detector with qualitative characterization from optical analysis offers a more complete and robust automated diagnosis of the origin and severity of PDs. | en_US |
| dc.language | eng | en_US |
| dc.relation.ispartof | Electronics (Switzerland) | en_US |
| dc.subject | 3306 Ingeniería y tecnología eléctricas | en_US |
| dc.subject | 3307 Tecnología electrónica | en_US |
| dc.subject.other | Partial discharges | en_US |
| dc.subject.other | Dielectric oil | en_US |
| dc.subject.other | Electrical sensor | en_US |
| dc.subject.other | Optical sensor | en_US |
| dc.subject.other | Fault diagnosis | en_US |
| dc.subject.other | Predictive maintenance | en_US |
| dc.subject.other | Artificial intelligence | en_US |
| dc.subject.other | YOLOv8 | en_US |
| dc.title | Fusion of Electrical and Optical Methods in the Detection of Partial Discharges in Dielectric Oils Using YOLOv8 | en_US |
| dc.type | info:eu-repo/semantics/article | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.3390/electronics14193916 | en_US |
| dc.identifier.scopus | 105019060054 | - |
| dc.identifier.isi | 001593601300001 | - |
| dc.contributor.orcid | NO DATA | - |
| dc.contributor.orcid | NO DATA | - |
| dc.contributor.orcid | NO DATA | - |
| dc.contributor.authorscopusid | 26531597500 | - |
| dc.contributor.authorscopusid | 35106946100 | - |
| dc.contributor.authorscopusid | 26531766200 | - |
| dc.identifier.eissn | 2079-9292 | - |
| dc.identifier.issue | 19 | - |
| dc.relation.volume | 14 | en_US |
| dc.investigacion | Ingeniería y Arquitectura | en_US |
| dc.type2 | Artículo | en_US |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.contributor.daisngid | No ID | - |
| dc.description.numberofpages | 32 | en_US |
| dc.utils.revision | Sí | en_US |
| dc.contributor.wosstandard | WOS:Monzón-Verona, JM | - |
| dc.contributor.wosstandard | WOS:García-Alonso, S | - |
| dc.contributor.wosstandard | WOS:Santana-Martín, FJ | - |
| dc.date.coverdate | Octubre 2025 | en_US |
| dc.identifier.ulpgc | Sí | en_US |
| dc.contributor.buulpgc | BU-ING | en_US |
| dc.description.sjr | 0,644 | |
| dc.description.jcr | 2,6 | |
| dc.description.sjrq | Q2 | |
| dc.description.jcrq | Q2 | |
| dc.description.scie | SCIE | |
| dc.description.miaricds | 10,5 | - |
| item.fulltext | Con texto completo | - |
| item.grantfulltext | open | - |
| crisitem.author.dept | GIR IUMA: Instrumentación avanzada | - |
| crisitem.author.dept | IU de Microelectrónica Aplicada | - |
| crisitem.author.dept | Departamento de Ingeniería Eléctrica | - |
| crisitem.author.dept | GIR IUMA: Instrumentación avanzada | - |
| crisitem.author.dept | IU de Microelectrónica Aplicada | - |
| crisitem.author.dept | Departamento de Ingeniería Electrónica y Automática | - |
| crisitem.author.orcid | 0000-0001-9694-269X | - |
| crisitem.author.orcid | 0000-0003-4389-0632 | - |
| crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
| crisitem.author.parentorg | IU de Microelectrónica Aplicada | - |
| crisitem.author.fullName | Monzón Verona, José Miguel | - |
| crisitem.author.fullName | Garcia-Alonso Montoya, Santiago | - |
| crisitem.author.fullName | Santana Martin, Francisco Jorge | - |
| Colección: | Artículos | |
Visitas
107
actualizado el 15-ene-2026
Descargas
14
actualizado el 15-ene-2026
Google ScholarTM
Verifica
Altmetric
Comparte
Exporta metadatos
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.