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Abstract

This study presents an innovative bimodal approach for laboratory partial discharge
(PD) analysis using a YOLOv8-based convolutional neural network (CNN). The main
contribution consists, first, in the transformation of a conventional DDX-type electrical
detector into a smart and autonomous data source. By training the CNN, a system capable
of automatically reading and interpreting the data from the detector display—discharge
magnitude and applied voltage—is developed, achieving an average training accuracy
of 0.91 and converting a passive instrument into a digitalized and structured data source.
Second, and simultaneously, an optical visualization system captures direct images of the
PDs with a high-resolution camera, allowing for their morphological characterization and
spatial distribution. For electrical voltages of 10, 13, and 16 kV, PDs were detected with a
confidence level of up to 0.92. The fusion of quantitative information intelligently extracted
from the electrical detector with qualitative characterization from optical analysis offers a
more complete and robust automated diagnosis of the origin and severity of PDs.

Keywords: partial discharges; dielectric oil; electrical sensor; optical sensor; fault diagnosis;
predictive maintenance; artificial intelligence; YOLOv8

1. Introduction
Power transformers are fundamental components of a high-voltage electrical network,

the failure of which can cause costly interruptions and long periods of downtime [1].
Dielectric oil, also known as transformer oil, is a high-purity, low-viscosity mineral oil
which is essential for the operation of transformers and other electrical equipment. It serves
a dual purpose, acting firstly as an electrical insulator between conductive components and
secondly as a coolant, dissipating the heat generated by the core and windings. Bubbles
within mineral oil are one of the most common defects in oil-paper insulation systems,
weakening their structure and jeopardizing the operational safety of transformers [2]. This
weakening is a precursor to the partial discharges (PDs) that can occur in them. The
detection of PDs is a key aspect for preventive maintenance that helps to avoid transformer
failure and for optimization of the number of scheduled transformer shutdowns.

PDs are important phenomena and one of the main indicators of the degradation of
the integrity of electrical insulation, whether solid, liquid, or gaseous. They manifest as
very short-duration electrical events—from tens of nanoseconds to microseconds—which
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the IEC 60270 [3] standard defines as localized, low-magnitude dielectric breakdowns.
Although they do not cause immediate failure, their persistence over time can erode the
insulation until it completely breaks down. Therefore, their early detection and accurate
characterization are crucial to prevent catastrophic failures in high-voltage equipment.

Unimodal techniques (UTs) for PD detection are based on the diverse physical phe-
nomena that accompany them. Each discharge, stochastic and aperiodic in nature, produces
a current pulse. This pulse can produce acoustic waves, generate electromagnetic radiation,
and release electrical charges [4]. The electrical method, standardized by IEC 60270 [3], is
the reference technique for measurements in controlled laboratory environments due to its
high sensitivity [5]. For monitoring under real-life operating conditions, non-conventional
methods such as ultra-high frequency [6] and acoustic emission detection [7] are used.
However, these techniques also present challenges such as the sensitivity of the acoustic
method to the sensor location or the effects of radio frequency interference on the ultra-high
frequency method [4].

Complementing electrical methods, optical techniques have emerged as a valuable
diagnostic tool, focusing on the detection of the weak electroluminescence emitted during
a discharge. Research in this field covers a wide spectrum of sensor technologies and
analysis methodologies. To overcome this signal weakness, highly sensitive sensors such as
silicon photomultipliers (SiPMs) have been developed, capable of detecting PD events with
high accuracy, demonstrating their feasibility for real-time monitoring [8]. Beyond mere
point detection, direct visualization of the phenomenon offers invaluable diagnostic value.
Advances in imaging sensors have enabled the visual characterization of discharges, such
as the corona effect, even using low-cost sensors in specific conditions such as aeronautical
ones [9].

The current trend is towards combining advanced image sensors with artificial intel-
ligence techniques to automate analysis. For example, the use of high-resolution CMOS
sensors, whose rich visual information is processed by CNN, has been demonstrated to
characterize and classify PDs in dielectric oils [10]. More advanced research explores the
capture of information across multiple multispectral light spectra, such as ultraviolet and
visible, to improve the detection, recognition, and assessment of discharges, providing a
more complete optical signature of the phenomenon [11]. In turn, more sophisticated deep
learning models, such as those based on the transformer architecture, are being developed
to analyze composite optical sensing data and achieve even more accurate and robust PD
identification [12].

Overall, the main advantage of these optical methods is their ability to provide direct
and intuitive visual evidence of the physical location, morphology, and propagation of the
discharge, which is vital for identifying the exact point of insulation degradation. However,
optical data are often qualitative and may be less sensitive for quantifying the electrical
severity of the discharge compared to the standardized electrical method.

Table 1 summarizes a Comparison of representative existing methods with our pro-
posed approach, focusing on aspects like the sensors and data sources used, the information
obtained, and the key limitations.

Table 1. Comparison of representative existing methods with our proposed approach.

Approach Sensors/Data Source Information Obtained Key Limitations

Traditional electrical
(IEC 60270)

Coupling capacitor,
Measuring impedance [3]

Quantitative
(Apparent Charge)

No spatial/morphological info.
Requires expert interpretation.

Acoustic & UHF Fusion Acoustic sensors,
UHF antennas [4]

Localization,
Event detection

Indirect correlation with charge
magnitude. Can be affected by

noise/barriers.
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Table 1. Cont.

Approach Sensors/Data Source Information Obtained Key Limitations

Optical (e.g., SiPMs,
multispectral cameras) Optical [8,11] High sensitivity,

Morphological

Often qualitative. Less direct
quantification of

electrical severity.

Our proposed method

DDX detector screen as
image source and
High-Resolution
CMOS camera

Quantitative
(charge, voltage) and

Spatial & Morphological
Discussed in Section 2

It is well known that the patterns or signatures of PDs depend on the type of PD pro-
duced [13]. However, these patterns often require expert interpretation, which introduces
subjectivity, limits scalability, and makes it difficult to accurately differentiate between
different types of failures. This dependence on human factors constitutes a bottleneck for
large-scale, real-time monitoring.

To overcome these limitations, the scientific community has turned to the use of
artificial intelligence (AI), which has demonstrated superior ability to automate feature
extraction, recognize complex patterns in data, and classify discharge types with accuracy,
surpassing conventional methods [14] and opening a new era in isolation status diagnosis.

Despite advances in AI using UTs, the information derived from this detection method
remains one-dimensional, whether electrical, acoustic, or electromagnetic in nature. AI
analysis can optimize the interpretation of such data but cannot generate more information.

Multisensory data fusion, or multimodal techniques (MTs), has emerged as a key strat-
egy for overcoming the limitations of UT systems, representing one of the most promising
frontiers in PD diagnosis. Comprehensive reviews of the state of the art, such as those pre-
sented in [15,16], provide in-depth analysis of the fundamentals, methodologies, benefits,
and challenges of this discipline, demonstrating its potential for achieving more robust and
reliable diagnoses.

In [17], a novel analysis method was developed that combines multimodal data and
time sequences to provide rapid diagnosis in power transformers. In [12], an innovative bi-
modal transformer-based deep learning model was developed that uses optical data for PD
classification. The system identifies sparks, corona, and surface discharges instantaneously,
demonstrating near-perfect efficiency.

To improve the low accuracy of traditional PD recognition methods, in [18] a new
system based on data fusion was presented. This method combines a statistical model
and a CNN to analyze phase-resolved PD [19] images. The results of both are integrated
using the Dempster-Shafer theory [20,21] achieving a recognition accuracy greater than
94%, which is a significant improvement over conventional approaches.

A robust diagnosis requires the synergy of two or more types of information. The
present study integrates the information provided by an electrical sensor and an optical
sensor. It combines the quantification of electrical severity by assessing the magnitude of
the charge and the characterization of its location and physical morphology through optical
imaging. Since no single method covers both dimensions, the combination of modalities is
presented as an indispensable strategy for a complete understanding of the phenomenon.

Along these lines, our work proposes a bimodal approach that creates a unique
synergy by combining the precise quantification of the electrical method with the spatial
and morphological characterization of the optical method. Thus, while the electrical
detector answers the question of the severity of the discharge magnitude, the optical
detection analyzes the nature of the defect by locating its origin and shape. In both cases,
AI analysis automates and enhances these two complementary procedures.
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Our choice aligns with the conclusions of comprehensive state-of-the-art reviews [22],
which establish that one-stage detectors like YOLO are optimized for real-time applications,
unlike two-stage models like Faster R-CNN. Comparative studies such as those presented
in the development of previous YOLO architectures [23] already demonstrate with bench-
marks on standard datasets like COCO that they achieve a superior balance between speed
and accuracy compared to models like Faster R-CNN.

In PD detection in dielectric oils, the identification of the pulses produced is of great
importance. All our tests are video recorded in order to extract as much information
as possible. In this way, we detect and identify these pulses in real time. To carry out
this task, YOLO (You Only Look Once) [24] is used as a tool for object detection in an
image. We evaluated the use of YOLO because it can be used in Python environments with
OpenCV [25].

YOLO models object detection as an extension of a regression problem, dividing the
image into a series of cells and predicting bounding boxes and their confidence levels for
each cell. This allows for a parallel search within the entire image, making it extremely fast
when using graphics processing units (GPUs) at the same time.

Object detection is a core technology in many AI applications and is the fundamental
goal of computer vision. In addition to detecting the presence of objects in images, it is also
desirable to determine their position within them with an acceptable level of precision, as
well as a confidence score of the class to which they belong.

It is a supervised learning problem that involves providing labeled data to an algo-
rithm for training. Subsequently, when new unlabeled data unknown to the algorithm is
introduced, it will be able to recognize certain patterns in the new data.

Presented by its authors in 2015 [24], YOLO is a set of open-source algorithms for real-
time object detection. Its architecture introduces a paradigm shift and marks a milestone in
the study of computer vision. It is a single-pass object detector that uses a complex CNN to
predict bounding boxes and class probabilities for objects of interest in input images.

Previously, the most widely used approach to analyze images was the use of CNN
and the sliding window concept. This involves choosing a window of a certain size and
scanning the entire image, thereby detecting any trace of an object within that window. This
method is very slow because it has to scan the entire image to try to find objects whose sizes,
spatial orientations, and shapes can vary greatly. In contrast, YOLO can process images in
real time with acceptable average accuracy at a speed of 155 frames per second (FPS).

Early versions of YOLO used a CNN architecture with a total of 24 convolutional layers,
4 max-pooling layers, and 2 fully connected layers. To operate, YOLO resizes the image by
normalizing the input to 224, 448, or 640 pixels before passing it through the CNN.

Since the launch of its first version (YOLOv1), YOLO has evolved. Version v2 was
launched in 2016 [26] and v3 in 2018 [27], with the introduction of the Darknet-19 archi-
tectures in v2 and Darknet-53 in v3. Versions v4 [28] and v5 [29] were launched in 2020,
v6 [30] and v7 [23] in 2022, and v8 in 2023 [31].

After evaluating the state of the art, the YOLOv8 architecture was selected. This family
of models is paradigmatic in one-stage object detection, offering a balance between speed
and accuracy that outperforms two-stage architectures such as Faster R-CNN for real-time
applications. Although the YOLO family continues its rapid evolution (with versions such
as v9–v12 already available), the choice of YOLOv8 was based on its status as a mature
and stable release at the time of this project. Its robust performance, combined with broad
community support and comprehensive documentation, provided the ideal framework to
ensure the reliability and reproducibility of our results.

This evolution has focused on increasing the detection speed by optimizing hyperpa-
rameters through the application of genetic algorithms. A comprehensive review of YOLO
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architectures in computer vision from YOLOv1 to YOLOv8 can be found in [32]. At the
time of writing, the most recent released version is YOLOv12. For our work, we chose
YOLOv8 because it is a mature technology and fits our real-time video processing needs,
facilitating the use of GPUs to increase training and inference speeds.

YOLO has played a prominent role in numerous activities including, among others,
applications in agriculture [33], industry [34], and the detection of objects in flight [35].

To implement this bimodal approach, two methods are combined. This article presents
a novel diagnostic system for PD analysis in dielectric oils that integrates data from a
conventional DDX electrical detector with high-speed image characterization using a
YOLOv8 CNN [34]. The objective is to demonstrate that this combination of methods
provides a substantially more complete and robust diagnostic view than that obtained
separately, laying the foundation for more reliable and intelligent monitoring.

Based on this principle, our work presents a novel bimodal diagnostic system that
combines electrical quantification using a DDX detector with optical characterization using
a high-quality camera (HQC). The main contribution lies in the synergistic fusion of these
two electrical and optical sensors and the comprehensive automation of data interpretation
using a GPU.

One of the key contributions of this study is the automation of both data sources. For
the electrical sensor, a YOLOv8 model is developed that interprets and digitizes the DDX
screen, transforming a conventional instrument into an intelligent data source. In parallel,
for the optical sensor, a novel semi-automated methodology is presented for the generation
of a high-quality dataset, which is a fundamental step for training. In both cases, intelligent
inference of electrical and optical data is produced.

PD detection has advanced significantly through multi-sensor fusion strategies, which
typically combine data from established sensors such as UHF, acoustic, and ground tran-
sient voltages. While these approaches are effective for detection and localization, they
often lack direct correlation with quantitative electrical measurements displayed on stan-
dard test equipment, as well as a high-resolution visual context that captures the physical
manifestation and morphology of the discharge.

Our work breaks away from this paradigm to address these limitations. The fun-
damental contribution of this study is twofold. First, we introduce a novel concept of
smart sensing, through which we transform a conventional visual electrical detector—a
passive display device—into an active and intelligent data source. Through advanced
computer vision techniques, such as OCR and object detection, we automate the extraction
of quantitative electrical values directly from the device’s screen. Second, we merge this
now digitized electrical information with high-resolution optical images of the discharge
phenomenon itself. This fusion creates a unique dataset that enables a morphological and
spatial characterization that other sensors cannot offer, directly correlating the electrical
magnitude of the event with its physical manifestation (shape, color, intensity, and precise
location). Therefore, while existing studies focus on data fusion from sensors operating
in distinct physical domains (acoustic, electromagnetic, etc.), our contribution lies in the
creation of a new smart sensor from a visual information source and its subsequent fusion
with another optical modality, offering an unprecedented level of diagnostic detail.

Unlike traditional PD diagnostic models, which typically analyze pre-processed nu-
merical data or pattern images, the approach in this work presents two fundamental
improvements in the data acquisition and analysis paradigm itself:

1. Data source automation: the first and fundamental improvement lies in the automa-
tion of the data source itself. Conventional approaches typically start with already
digitized data. Our system, on the other hand, uses computer vision not only to
analyze but also to generate structured data in the first place. By directly reading the
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display of a conventional, non-smart instrument, it transforms it into a self-contained,
structured, digital data source. This eliminates the dependence on manual operator
interpretation or proprietary data interfaces, offering an innovative solution for the
modernization and automation of existing equipment.

2. Novel bimodal fusion for contextualized diagnosis: the second key improvement
is the novel bimodal fusion that provides diagnostic context unattainable with
unimodal models. Our approach fuses and combines this quantitative electrical
information—the “how much”—automatically extracted from the detector with the
qualitative and morphological characterization of direct optical images—the “where”
and the “how.” Therefore, the improvement lies not only in the classification algorithm
itself, but in the contextual richness of the fused data provided to it. This synergy
enables a much more comprehensive diagnosis, correlating the electrical severity of
an event with its precise physical manifestation in space.

The rest of this paper is structured as follows. Section 2 describes the experimental set
up, Sections 3 and 4 present the automation of the electrical detector via computer vision
analyses the optical characterization of PDs via computer vision. Finally, in Section 5 the
main conclusions are presented.

2. Experimental Set Up
In the present work, the PDs were measured in a dielectric oil located inside a methacry-

late cell [10] containing two facing electrodes subjected to high electrical voltages (Figure 1).
The experimental installation complies with the IEC60270 standard [3].

 
Figure 1. Transparent methacrylate cell with the two electrodes.

All tests lasted 45 s and were carried out at an ambient temperature of 21 ◦C. The PDs
were monitored using a conventional DDX-9101 PD detector, Basel Switzerland, (Figure 2),
and the high voltage was regulated using an OT 248 terminal, Basel Switzerland.

 
Figure 2. PD detector DDX-9101, Tettex-Haefely test AG.

The DDX-9101 screen was recorded by a digital camera to store the results of each test.
This camera records video in 1920 × 1080p at 30 FPS.
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Preliminary tests showed that PDs were practically non-existent below 6 kV and that
electric arc breakdowns occurred from 18 kV onwards.

Taking this information into account, the PD were analyzed in a first series rang-
ing from 6 to 18 kV. The voltage was increased by 1 kV in each test, thus performing
13 independent tests. The total duration of each experimental test was 45 s. The voltage
applied to the electrodes started from 0 kV and followed an ascending ramp lasting approx-
imately 10 s until reaching the desired nominal charge. After 45 s of testing, the electrical
voltage was reduced to zero. A total of four sets of tests were performed from 6 to 18 kV.
Therefore, the number of tests performed in this first series is 52.

These tests showed that PDs increase significantly above 10 kV. Therefore, it was
decided to conduct a second series for voltages of 10, 13, and 16 kV. Four sets were
performed following the same methodology described above. Therefore, the number of
tests performed in this second series amounts to 12. These additional tests were performed
where the PDs are greatest, near the arc break. The total number of tests was 52 + 12 = 64.

To ensure the comparability of results across different voltage levels within a single
experimental run, the same sample of dielectric oil was used. The oil was subsequently
replaced before initiating a new series of tests to prevent potential degradation effects from
influencing the measurements.

An HQC was used to record the PDs produced between the electrodes (Figure 3a).
Detailed information about the HQC can be found in [36]. It is an affordable camera of
exceptional quality with a resolution of 12.3 megapixels and a 7.9 mm diagonal sensor. This
camera works especially well in low-light conditions.

  
(a) (b) 

Figure 3. Position of the HQC and schematic of the experimental setup. (a) Position of the HQC
relative to polarizer 2. (b) Simplified schematic of the arrangement of the lamp, polarizers, and HQC
with respect to the cell.

In addition, two polarizers were introduced into the experimental device, rotated at
a certain angle so that the light that reaches the HQC, coming from a lamp, produces the
greatest possible contrast to view the PD [10] (see Figure 3b).

The proposed method is performed in a controlled laboratory environment and has
proven to be an effective tool for the detection and characterization of PDs.

However, it is essential to understand the limitations inherent in their in situ applica-
tion. Below, we mention some aspects to consider in these cases that are beyond the scope
of this study and that may guide future lines of research.

• Sensitivity to lighting conditions and optical environment: The performance of both
YOLOv8 object detection and OCR character recognition is intrinsically dependent on
the quality of the captured images. The methodology is sensitive to variations in ambi-
ent lighting conditions. Factors such as reflections, shadows, or uneven lighting can
introduce noise and affect the accuracy of the algorithms. A controlled environment
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was maintained in our laboratory, but in situ implementation would require more
robust solutions, such as the use of controlled and polarized light sources or more
advanced image preprocessing algorithms to normalize the captures.

• Transparency of the dielectric medium: The effectiveness of optical discharge detection
relies on the assumption that the dielectric medium, in this case the oil, is optically
transparent. In real-world applications, insulating oils degrade over time due to
thermal and electrical stress, which can increase their turbidity, change their color, or
generate suspended byproducts. This degradation would cause attenuation of the
optical signal through scattering or absorption, making it difficult or even impossible
to capture the discharge morphology, especially for low-intensity events.

• Direct optical access requirement: A fundamental requirement of this technique is
the existence of a direct line of sight to the area where the discharges occur. Our
experimental setup used a vessel with transparent walls, simulating an inspection
window. However, most high-voltage electrical equipment in service is sealed metal
vessels. Widespread application of this method would require the availability of
equipment with inspection windows or the possibility of making significant structural
modifications to install them, which is not always feasible, safe, or economically viable.

• Scalability to field equipment: The transition from a laboratory environment to on-site
diagnostics on large equipment, such as power transformers, presents considerable
challenges. The large internal volume of this equipment makes it complex to determine
the optimal location of one or more cameras to cover all potential risk areas. Further-
more, integrating a vision system into the existing monitoring infrastructure and ensur-
ing its durability in the harsh environmental conditions of an electrical substation are
engineering hurdles that must be addressed for practical, large-scale implementation.

Despite these limitations, the proposed method sets a solid precedent for the “smart
sensing” of visual sources and their fusion with optical data, opening new avenues for the
in situ diagnosis of high-voltage phenomena with an unprecedented level of detail.

3. Method 1: Automating the Electrical Detector via Computer Vision
This section presents the CNN training and inference analysis in operational scenar-

ios using images obtained from the DDX electrical detector. The dataset was manually
generated for this purpose.

3.1. CNN Training

This section presents and analyzes the results obtained from the training and validation
of the YOLOv8 model for PD detection and classification, as well as its quantification.
Training was performed over 150 epochs using a partitioned dataset as described below.

3.1.1. Training Environment

Training and evaluation of the YOLOv8 model was carried out on a high-performance
workstation running Ubuntu 22.04.5 LTS (codename: jammy). The system is equipped with
a 12-core AMD Ryzen Threadripper 1920X processor (24 threads, 3.5 GHz base frequency)
and 125 GB of RAM.

For the processing of deep learning tasks, an NVIDIA GeForce RTX 2070 SUPER GPU,
Santa Clara, CA, USA, with 8192 MB (approximately 7.9 GB) of dedicated video memory
(identified as CUDA:0) was used. This GPU operates with the NVIDIA driver version
570.133.07 and support for CUDA 12.8. The software environment was configured with
Python 3.10.16, PyTorch 2.5.1 and the Ultralytics YOLOv8 framework version 8.3.111 [32].
The specific model employed presents an architecture of 92 fused layers, adding a to-
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tal of 25,842,655 parameters and requiring approximately 78.7 GFLOPs for its execution
in inference.

3.1.2. Manual Labeling of DDX Images

Figure 4 shows six images taken randomly during the tests at 6, 8, 10, 12, 14, and 16 kV.
It can be seen how the number of pulses progressively increases with increasing voltage
applied to the electrodes. A voltage limit of 16 kV was not exceeded to avoid the electric
arc breakdowns that occurred in the preliminary tests from 18 kV onwards.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4. Images collected by the DDX for voltages from 6 to 16 kV. (a) 6 kV. (b) 8 kV. (c) 10 kV.
(d) 12 kV. (e) 14 kV. (f) 16 kV.

As mentioned above, the camera records the DDX screen at 30 FPS. Each video
therefore contains 45 s × 30 FPS = 1350 frames, giving us 64 videos.

Using Image-J version 1.54g [37], the region of interest (ROI) of each video was
delimited, which is necessary for the efficient analysis of the images obtained from the
DDX screen. In this way, only the rectangular area of each video containing the fields that
will later be labeled and analyzed was selected. The video format used for the camera was
converted from MP4 to AVI, which can be imported into Image-J. Once imported, the AVI
file was converted to a set of images in PNG format.

For manual image labeling, 10 images were randomly selected from each test, resulting
in the labeling of a total of 640 images. The online software Roboflow [38] was used for
this purpose.

The following classes were labeled in each image:

attenuation_value
negative_pulse
pd_level_value
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positive_pulse
voltaje_value

Figure 5 shows an example of an image labeled using the Roboflow program.

 

Figure 5. ROI labeling with Roboflow showing the five classes used: attenuation_value, nega-
tive_value, pd_level_value, positive_pulse, and voltage_value.

It is important to clarify that the approach in this work does not rely on traditional
signal processing to ensure a high signal-to-noise ratio or to remove noise from the un-
derlying electrical signal. Instead, the problem is approached as a computer vision task,
where the objective is to train a YOLOv8 model to recognize the visual patterns of pulses
as presented on the DDX detector screen. From this perspective, the baseline visual noise,
including the sine wave and low-level fluctuations, is not filtered out but constitutes the
image background.

During the training process, the CNN learns to identify the distinctive visual char-
acteristics of the pulses, the signal, and to differentiate them from the background, the
visual noise, implicitly learning to ignore it. The effectiveness of this approach is validated
by the high-performance metrics obtained, as detailed later. The high accuracy scores,
above 0.91, and the confusion matrix results quantitatively demonstrate that the model was
able to successfully differentiate the pulses of interest from the background, validating the
robustness of this image recognition-based method for the proposed task.

3.1.3. Dataset Setup and Training

An additional 200 images that had been used in pre-training the CNN were added to
the initial dataset of 640 images. Hence, the final dataset comprised 840 images, managed
and labeled using the Roboflow platform. For the training and evaluation process, the
dataset was divided into three subsets:

Training: 594 images (71%).
Validation: 146 images (17%).
Test: 100 images (12%).

The YOLOv8 model was trained for 150 epochs. Learning curves and performance
metrics were monitored for both the training and validation sets.
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3.1.4. Analysis of Loss Curves

Loss functions provide crucial information about how the model learns to minimize
errors during training. Three main loss components were analyzed: Box Loss, Classification
Loss, and Distribution Focal Loss (DFL). These three loss curves are analyzed below. In all
three cases, small errors were obtained during training.

Box Loss

Figure 6 shows the evolution of Box Loss for the training and validation sets. Box
Loss measures the accuracy with which the model predicts the coordinates of the object’s
bounding box. A constant decrease in Training Box Loss is observed throughout the epochs,
indicating that the model is learning to localize objects progressively better.

 
Figure 6. Comparison between Training Box Loss and Validation Box Loss.

Validation Box Loss also shows a decreasing trend, although with more pronounced
initial fluctuations and stabilizing at a value slightly higher than the Training Box Loss
towards the end of the epochs. This behavior is typical and suggests that the model
generalizes adequately, although there may be slight overfitting. Box Loss in YOLOv8 uses
a CIoU (Complete Intersection over Union) metric [39] following Equation (1):

LCIoU = 1 − IoU +
ρ2(b, bgt

)
c2 + αv (1)

where
LCIoU : Value of the CIoU loss. The goal of YOLOv8 is to minimize it.
IoU: Intersection over Union, Equation (2). It measures the overlap between the

predicted and actual boxes. Its value ranges from 0 with no overlap to 1 with perfect
overlap. It is calculated as:

IoU =
Area

(
bp ∩ bgt

)
Area

(
bp ∪ bgt

) (2)

b: Bounding box predicted by the model (coordinates xcenter, ycenter, width, height).
bgt: Real bounding box (ground truth) (coordinates xcenter_gt, ycenter_gt, width,

height gt).
ρ2(b, bgt

)
: Squared Euclidean distance between the center points of the predicted box

b and the actual box bgt. ρ represents the distance.
c: Length of the diagonal of the smallest bounding box that completely encloses both b

and bgt. Normalizes the distance penalty.
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α: Positive weighting parameter that adjusts the importance of the aspect ratio consis-
tency term.

v: Measure of the consistency of the aspect ratio between the predicted and real box.
It is calculated through Equation (3):

v =

(
4

π2 arctan
(

wgt

hgt

)
− arctan

(
wp

hp

))2
(3)

where wgt and hgt are the width and height of the actual box, and wp and hp are the width
and height of the predicted box.

Classification Loss

Figure 7 illustrates the Classification Loss. This loss quantifies the model’s error in
assigning the correct class to the detected objects. Both the Training and the Validation Box
Loss consistently decrease. The validation curve closely follows the training curve, also sta-
bilizing and suggesting good generalization capability for the classification task. YOLOv8
employs a loss function such as binary cross-entropy for this task, Equation (4), [40]:

Lcls = −∑
i
[yilog(ŷi) + (1 − yi)log(1 − ŷi)] (4)

where the summation ∑i[ ] is performed on the classes used: attenuation_value, nega-
tive_value, pd_level_value, positive_pulse and voltage_value, and where

Lcls: Classification Loss value.
yi: Ground truth label for class i. yi = 1 if the object belongs to class i, yi = 0 if it

does not.
ŷi: Probability predicted by the model that the object belongs to class i. It is the result

of a sigmoid function with value in [0, 1].
log( ): Natural logarithm.

 
Figure 7. Comparison between Training Classification Loss and Validation Classification Loss.

Distribution Focal Loss

The DFL [41], shown in Figure 8, is a component that helps refine the prediction
of bounding box coordinates by modeling the location of the box edges as a probabil-
ity distribution. The training and validation DFL curves also show a decreasing trend
and good correlation, indicating that the model is effectively learning this more detailed
representation of the location.
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Figure 8. Comparison between Training and Validation DFL.

The DFL is expressed in Equation (5):

LDFL
(

Pyl , Pyr

)
= −

(
(yr − y)log

(
Pyl

)
+ (y − yl)log

(
Pyr

))
(5)

where
LDFL: DFL value.
y: Continue Ground truth coordinate of a box edge.
yl : Label of the discrete container immediately to the left of y.
yr: Label of the discrete container immediately to the right of y.
Pyl : Probability predicted by the model for container yl .
Pyr : Probability predicted by the model for container yr.
The terms (yr − y) and (y − yl) act as weights.

3.1.5. Performance Metrics

The model’s performance was then evaluated using standard object detection met-
rics [42]. Specifically, the Precision, Recall, and Mean Average Precision metrics (mAP)
were used. In all three cases, the growth was constant, and the stabilization of the metrics
at high values indicates good detection and classification performance.

Precision and Recall in Training

Figures 9 and 10 show the evolution of Precision, Equation (6), and Recall, Equation (7),
respectively, the training set. Both metrics tend to increase as training progresses, stabilizing
at high values of 0.91 and 0.92 for Precision and Recall, respectively, indicating that the
model learns to correctly identify relevant objects while minimizing false positives and
false negatives in the analyzed data.

Precisin =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

where TP are true positives, FP are false positives and FN are false negatives.
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Figure 9. Precision on the training set.

Figure 10. Recall on the training set.

mAP in the Validation

The mAP is a key metric for evaluating the overall performance of object detectors.
Figure 11 shows the mAP at an Intersection over Union (IoU) threshold of 0.5 (mAP@0.5),
while Figure 12 presents the mAP averaged over multiple IoU thresholds from 0.5 to 0.95 in
steps of 0.05 (mAP@0.5:0.95). Both mAP curves on the validation set show a steady increase,
reaching values of 0.94 and 0.62 for (mAP@0.5) and (mAP@0.5:0.95), respectively. The
more strict mAP@0.5:0.95 provides a more robust assessment of the model’s localization
performance. The steady growth and stabilization at high values indicate good detection
and classification performance with validation data not seen in the training set.

The Average Precision (AP) for a class, Equation (8), is calculated as the area under the
Precision-Recall curve. One way to calculate it is:

AP =
N

∑
k=1

P(k)∆r(k) (8)

where
AP: AP for a specific class.
k: Index of predictions ordered by confidence (from highest to lowest).
N: Total number of thresholds or data points considered.
P(k): Accuracy calculated at the kth Recall point or by considering the k highest

confidence detections.
∆r(k): Change in Recall from point (k − 1) to point k (i.e., ∆r(k) = r(k)− r(k − 1)).
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Figure 11. mAP@0.5 on the validation set.

Figure 12. mAP@0.5:0.95 on the validation set.

3.2. Confusion Matrix

This section presents a detailed overview of the successes and errors of the classes that
were considered through the study of the Confusion Matrix in the validation and in the
test set.

3.2.1. Confusion Matrix on the Validation Set

The Confusion matrix [43], presented in Figure 13, provides a detailed view of the
model’s classification successes for each of the five classes in the validation set. Values on
the main diagonal represent correct classifications. A high number of correct predictions is
observed for most classes: negative_pulse (650), positive_pulse (615), attenuation_value
(145), pd_level_value (145), and voltage_value (144).

The attenuation_value, pd_level_value and voltage_value classes show very little con-
fusion, indicating good distinction by the model. However, some confusions are identified
in the background class, which is incorrectly classified as negative_pulse in 197 instances
and as positive_pulse in 231 instances. Furthermore, instances of negative_pulse (98) and
positive_pulse (87) are wrongly identified as background. These confusions could be due
to the visual similarity of these signals with background noise or to the inherent variability
of background signals, which can resemble weak pulses.
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Figure 13. Confusion matrix of the model on the validation set.

3.2.2. Confusion Matrix on the Test Set

After training the YOLOv8 model for 150 epochs, its detection and classification
performance was evaluated on the test set, which consisted of 100 images not used dur-
ing the training and validation phases. This set contains a total of 1025 labeled object
instances belonging to the five defined classes. The evaluated model, with 92 fused layers,
25,842,655 parameters, and a complexity of 78.7 GFLOPs, was subjected to inference on
this dataset.

The model’s processing speed on the test set was remarkable, with an average time
of 1.7 ms for preprocessing, 11.3 ms for inference itself, and 5.3 ms for postprocessing per
image. This results in an efficient overall inference time, which is crucial for applications
requiring real-time responses or the processing of large volumes of data.

The overall evaluation results on the test set show robust model performance. An
average Precision of 0.93 and an average Recall of 0.93 were obtained. Regarding the mAP,
a value of 0.95 was achieved with an IoU threshold of 0.5 (mAP@0.5). When considering a
stricter range of IoU thresholds, from 0.5 to 0.95 in steps of 0.05 (mAP@0.5:0.95), the model
achieved a value of 0.62. These values suggest a good ability of the model to correctly
locate and classify events in the signals, with mAP@0.5:0.95 being a stricter indicator of
accuracy in locating bounding boxes.

Analyzing the performance broken down by class using the mAP@0.5:0.95 metric
reveals the following values: attenuation_value 0.67, negative_pulse 0.45, pd_level_value
0.77, positive_pulse 0.48, and voltage_value 0.71.

Excellent performance is observed for the pd_level_value and voltage_value classes,
followed by attenuation_value. The negative_pulse and positive_pulse classes exhibit
lower mAP@0.5:0.95, indicating greater difficulty for the model in accurately localizing
bounding boxes for these pulse types under strict IoU criteria, although its performance at
mAP@0.5 remains high.
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Figure 14 shows the confusion matrix obtained from the model’s predictions on the test
set. The following correct predictions are observed on the main diagonal: attenuation_value
99, negative_pulse 327, pd_level_value 99, positive_pulse 316, and voltage_value 99.

Figure 14. Confusion matrix model predictions on the test set.

The attenuation_value, pd_level_value, and voltage_value classes show very little or
no confusion with other classes or the background, indicating excellent distinction by the
model for these specific events.

The model demonstrates a high ability to correctly classify most instances. However,
some significant confusions are identified, primarily related to the background class. Specif-
ically, the true background class is incorrectly classified as negative_pulse 76 times and as
positive_pulse 86 times.

On the other hand, true instances of negative_pulse 47 and positive_pulse 37 are
incorrectly classified as background. That is, in these cases, the model either fails to
detect them or mistakes them for the background. There is also much less confusion
between negative_pulse and positive_pulse, with just one instance of negative_pulse
predicted as positive_pulse. Background confusion for positive and negative pulses could
be attributed to the visual similarity of low amplitude pulses to background noise or to
inherent variability in the signal that makes distinction difficult.

A fundamental aspect in validating the robustness of a classification model is the
analysis of the class balance in the dataset, since a severe imbalance could bias the training
and evaluation metrics. To address this point, the distribution of the main classes in our
test set has been examined. As evident from the confusion matrix (Figure 14), the total
number of instances for the negative_pulse class is 374, while for the positive_pulse class
it is 353. This distribution, with a ratio close to 1:1, confirms that there is no significant
class imbalance. Therefore, it can be concluded that the high performance of the model
in identifying both pulse polarities is genuine and not an artifact derived from an over-
representation of one of the classes, which confers greater reliability to the presented results.
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3.3. Inference in Operational Scenarios

This section analyzes the inference of images from the DDX electrical detector videos
using the trained CNN. This automatically produces the five classes as the final result, and
for three of them the numerical value is obtained.

3.3.1. Inference Flowchart

Figure 15 shows the flowchart that explains how inference is performed from video
sequences from the DDX electrical detector for object detection and quantitative data ex-
traction. The program was made in Python, and its architecture designed to be efficient and
clear. It is divided into three phases: setup and initialization, frame-by-frame processing,
and finalization.

Figure 15. Flowchart explaining how inference is performed from video sequences from the electrical
sensor for object detection and quantitative data extraction.
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Phase 1: Set up and initialization
This is a preliminary phase that prepares all the components necessary for the analysis.

It performs three tasks sequentially:
Startup and configuration: the process begins by loading user-defined configurations,

such as the input video and YOLOv8 model paths, confidence thresholds, and a list of
interest classes that will trigger optical character recognition (OCR).

Engine loading: the two main inference engines, the YOLOv8 object detection model
and the Python EasyOCR OCR engine, are initialized and loaded into memory. This loading
is performed only once at startup to optimize system performance. The number of GPUs to
be used is also determined.

Opening files: the input video stream is opened and the output files are created,
including the new video with the visual annotations and the text file that will record its
detailed data.

Phase 2: Frame by frame processing, main loop
This is the operating core of the system, where each frame of the video is

analyzed sequentially.
YOLOv8 inference: the current frame is fed into the YOLOv8 model, which identifies

and locates all classes of interest that exceed the confidence threshold, returning their
bounding boxes, class labels, and confidence scores.

Detection loop: the system iterates through each of the detections found in the frame.
OCR class certification: for each detection, a decision is made based on its class

label. If the class is predefined as an OCR target—pd_level_value, voltage_value, and
attenuation_value—the system proceeds with OCR inference.

OCR inference: this critical step extracts the quantitative data:
ROI cropping: the exact portion of the image contained within the detection bounding

box is extracted from the frame.
OCR application: the OCR engine analyzes this small ROI to recognize the textual

information present.
Value interpretation: the extracted text is processed to convert it into a numerical value.
Output log: all detection data is logged. Bounding boxes and corresponding

labels—confidence and OCR value, if applicable—are drawn on the output video frame.
Detailed information about each detection, including the numerical value analyzed by the
OCR, is added as a new line to the text file.

Phase 3: End
Once all frames have been processed, the system performs an orderly shutdown,

leaving the output files ready for further analysis.

3.3.2. Results and Discussion

To test the performance and generalization capabilities of the YOLOv8 model trained
and verified in the previous sections, an inference evaluation was performed on completely
new data. To do this, three videos of 10 s were used, captured at voltage levels of 10 kV,
13 kV, and 16 kV, respectively. Each video, corresponding to approximately 300 images,
was processed by the trained model to evaluate its effectiveness in detecting and classifying
events under operating conditions not seen during training.

Figure 16a–c present representative frames of the inference for each voltage level. It is
observed that the model not only successfully identifies the discharge pulsesnegative_pulse
and positive_pulse, but also correctly reads and classifies the instrument numerical
values—pd_level_value, voltage_value—and the attenuation value—attenuation_value.
The high confidence scores, generally >0.70, for all classes demonstrate the robustness
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of the model in a complex task combining signal pattern detection with implicit optical
character recognition.

   
(a) (b) (c) 

Figure 16. Inference for 3 images from the trained CNN. (a) PD detection for 10 kV. (b) PD detection
for 13 kV. (c) PD detection for 16 kV.

For a deeper analysis of the relationship between PD activity and electrical magni-
tudes, cumulative detection images were generated for each 10 s video, as illustrated in
Figure 17a–c. These images overlay all the bounding boxes of the detected pulses over the
first frame of the video, providing a comprehensive view of the PD activity signature.

   
(a) (b) (c) 

Figure 17. Accumulated detection images for each PD video of 10 s duration. (a) PD accumulation
for 10 kV. (b) PD accumulation for 13 kV. (c) PD accumulation for 16 kV. The green color corresponds
to negative PDs and magenta to positive ones.

Analysis of these visualizations reveals a direct and physically consistent correlation
between the applied voltage, the measured discharge level, and the activity detected by
the model.

1. At 10 kV, the model detects moderate discharge activity, with well-defined but rel-
atively compact green clusters of negative and magenta positive pulses. This cor-
responds to an instrumental reading of PD Level 0.426 nC and Voltage 10.1 kV in
Figure 17a.

2. At 13 kV, with increasing voltage, a significant increase in the density and spatial
extent of detections is observed. Both the negative and positive cumulative pulses are
visibly larger and denser. This increased visual activity directly correlates with the
increased discharge level measured by the instrument, which now shows PD Level
0.701 nC and Voltage 13.1 kV in Figure 17b.
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3. At 16 kV, the phenomenon intensifies dramatically. The cumulative image shows a
much larger and more saturated area of activity, indicating a very severe PD regime.
This exponential increase in visual activity is consistent with the instrumental reading,
which reaches a PD Level of 3.88 nC and a Voltage of 16.6 kV, as shown in Figure 17c.

The data that our system automatically extracts (discharge magnitude and its time
of occurrence) are precisely the ingredients required to construct PRPD patterns. As can
be inferred from the data presented in Figure 17, these patterns could be generated and,
in a subsequent research phase, be analyzed by another neural network (which could be
another model from the YOLOv8 family or a different architecture) to perform a detailed
classification of the PD type.

Table 2 presents a summary of the relationships between the main attributes obtained
from the inference of the trained CNN for accumulated experiments at 10 kV, 13 kV and
16 kV. It presents the most significant Pearson correlation coefficients (r) [44], with a focus
on the main electrical variables, ocr_voltage and ocr_pd_level, and their relationships
with other geometric characteristics such as the pulse area, pulse coordinates CenterX
and CenterY, as well as the number of positive and negative pulses detected. It shows a
correlation of 0.90 between the magnitudes obtained in the ocr_voltage and ocr_pd_level
classes, which confirms that these variables measure strongly related aspects of the same
physical phenomenon.

Table 2. Summary of the most relevant Pearson correlation coefficients (r).

Attribute 1 Attribute 2 Coefficient (r)

Strong positive correlations (r > 0.7)
ocr_voltage ocr_pd_level 0.90
num_pulse_negatives ocr_voltage 0.77
Area Height 0.90
Area Width 0.78
CenterX CenterY 0.77
Significant negative correlations (r < −0.3)
ocr_voltage Width −0.41
ocr_pd_level Width −0.39
num_pulsos_negativos Width −0.34
Other moderate positive correlations (0.5 < r < 0.7)
num_pulse_negatives ocr_pd_level 0.59
Confidence Width 0.55
Area Confidence 0.53

We also observe a strong positive relationship of 0.77 between the increase in the mag-
nitude of ocr_voltage and the number of pulse_negatives detected, suggesting that higher
voltages generate more negative discharges. On the other hand, an inverse relationship is
observed between voltage and the geometric ratio. The most notable negative correlation
0.41 is between ocr_voltage and Width. This indicates that pulses tend to become narrower
as voltage increases. This is a non-obvious but highly informative pattern that the machine
learning model is using for classification.

A particularly interesting finding that emerges from the correlation analysis in
Table 2 is the moderate negative correlation observed (−0.41) between the applied voltage,
ocr_voltage, and the detected pulse width, Width. This result, although at first glance might
seem counterintuitive, may have a plausible physical explanation linked to the dynamics
of PDs in dielectric oils.

From a physical perspective, we hypothesize that this behavior is related to the energy
and speed of the discharge process. As voltage increases, the energy injected into the
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dielectric medium increases. This could lead to more accelerated ionization processes
and the formation of more energetic, but at the same time more ephemeral and spatially
concentrated, discharge channels. A shorter duration discharge event, i.e., faster, would
be directly translated on the measuring equipment screen as a visual pulse with a smaller
temporal width. Therefore, the system would be capturing a morphological manifestation
of the greater intensity and brevity of discharges at higher voltages.

While a comprehensive characterization of the underlying plasma dynamics to validate
this hypothesis is beyond the scope of this work, this finding is significant in itself. It
demonstrates the ability of our computer vision system not only to quantify parameters in
isolation but also to uncover subtle correlations that link the morphology of the visual signal
to the physical principles of the PD phenomenon. This is a promising result that paves
the way for future analyses that can corroborate these relationships with more detailed
physical models.

In conclusion, this experimental validation on data not used in the training set demon-
strates the effectiveness of the trained model. Not only is it capable of generalizing and
operating as a robust monitoring system, but its visual detections act as a qualitative and
quantitative analogue of electrical measurements. The density, area, and frequency of
bounding boxes detected by the model provide a direct visual measure of the severity of the
phenomenon, validating this approach as a powerful and reliable tool for the automated
diagnosis and quantification of PDs.

4. Method 2: Optical Characterization of PDs via Computer Vision
This section presents the CNN training and inference analysis in operational scenarios

using images obtained using the HQ camera. The training environment in this section is
the same as that used in Section 3. However, in this section a semi-automatic generation of
the dataset is realized, which greatly facilitates the labeling of the training, validation, and
test sets.

4.1. CNN Training

The purpose of this section is to train a CNN based on YOLOv8 architecture.
The section is divided into two subsections: semi-automatic dataset generation and
training results.

4.1.1. Semi-Automatic Generation of the Dataset

To train the CNN based on the YOLOv8 architecture for PD detection in videos
obtained with the HQC, a Python script was developed for video processing to obtain the
training, validation, and test images. This process automates the identification of candidate
events, filters out known false positives, and generates a structured and labeled dataset in
the format required by YOLOv8. The methodology is based on background subtraction,
contour analysis, and a novel manual spatial exclusion filter that significantly improves the
quality of the final dataset by reducing noise and the need for subsequent manual cleaning.

The structure of this section is as follows: first, the semi-automatic data acquisition
model is configured and initialized. Next, a Python program is created for PD detection
and extraction. Data filtering, validation, and collection are then performed. Finally, the
dataset is generated in YOLOv8 format for CNN training. To facilitate understanding of
this process, a flowchart summarizing the overall method described is included.

Configuration and Initialization

The process begins with a configuration phase where key parameters are defined. The
I/O paths are defined first, and then the input video and output file paths are specified.
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These include debugging videos—difference, threshold and detected events—and a .dat
data file with the characteristics of each PD.

Manual exclusion zones are then established. This is a crucial component of the system
as it allows the user to define a priori spatial regions in the image where recurring false
positives—reflections, sensor noise, etc.—are known to occur. Each zone is defined by
a centroid, an exclusion radius on the x and y axes, and, optionally, an expected area
with its tolerance. Any detected event whose centroid falls within one of these zones is
automatically discarded.

The parameters of YOLOv8 dataset are defined below. The dataset’s root directory,
the class to be detected (PD), and the ratios for dividing the data into training sets, 66.7%,
validation sets, 22.0%, and test sets, 11.3%, are named.

PD Detection and Extraction

The core of the Python script processes the video frame by frame to identify events of
interest. This process is broken down into four steps:

Background establishment: the first frame of the video is assumed to represent the
static background of the scene. This frame is converted to grayscale and stored for reference.

Background subtraction: for each subsequent frame, the absolute difference with the
background frame is calculated. The result is an image that highlights only the regions
where changes have occurred (i.e., new PD).

Thresholding and morphological cleaning: the resulting image is binarized using a
fixed threshold to convert subtle changes into well-defined, white-on-black regions. A
morphological operation is then applied to remove noise.

Contour detection: on this last image, the OpenCV Python library algorithm [25] is
applied to determine the contours of all the change regions. Each contour represents a
candidate PD.

Filtering, Validation and Data Collection

This process is carried out in the following steps:
Minimum area filter: contours with an area smaller than a predefined threshold of

5 pixels are discarded to remove residual noise.
Manual exclusion filter: the contour centroid is calculated. If this centroid falls within

any of the manual exclusion zones defined in the configuration, the contour is classified as
a false positive and discarded.

Data collection: if a contour passes both of the above filters, it is considered a valid PD.
For each valid PD, the following is extracted and stored:

1. The bounding box.
2. The centroid coordinates, area and average RGB color intensity in a .dat text file for

further analysis.
3. A copy of the original, unprocessed frame and the list of bounding boxes for all valid

events found are saved. This pair (image, labels) is the input data in YOLOv8 format.

Generating the Dataset in YOLOv8 Format

Once the entire video has been processed, the script uses the collection of frames with
valid PDs to build the final dataset, and the following steps are performed:

Directory structuring: a folder structure compatible with YOLOv8 framework is
created with the subdirectories train, valid, and test, each containing folders for images
and labels.

Data splitting: the data collection—images and their labels—is randomly shuffled and
split into training, validation, and test sets according to the ratios defined above.
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File generation for each image: the original image is saved as an image_name.jpg in
the corresponding images folder.

An image_label.txt file is created in the corresponding labels folder. Within this
file, each line represents an event detected in that image, in the format: [class_index,
x_center_norm, y_center_norm, width_norm, height_norm]. All bounding box coordinates
are normalized by dividing them by the frame width and height dimensions, as required
by YOLOv8.

Configuration file (data.yaml): finally, a data.yaml file is generated at the root of the
dataset. This file is essential for YOLOv8 to locate the datasets and identify the number of
classes and their names.

The end result is a high-quality dataset, ready to be used directly in training
a YOLOv8 object detection model, minimizing manual intervention and improving
labeling consistency.

Summary Flowchart of the Process

To visualize the logical flow of the script used to generate the YOLOv8 compatible
dataset, a flowchart was created as shown in Figure 18.

Figure 18. High-level logical flow of the script focusing on the three main phases: configuration,
processing and detection, and dataset generation.

The three main phases of the flowchart are summarized below:

1. Setup and loading: in this initial phase, all resources are prepared. The script reads
the file paths, uploads the video, and manually defines exclusion zones, which are
key to filtering out known false positives.

2. Video processing loop: this is the core of the script. It operates frame by frame,
performing two main tasks in sequence:

(a) PD detection and filtering: this block encapsulates all the computer vision logic,
subtracts the background (see Figure 19a) to find the changes that occur, binarizes
the image, finds the PD boundaries and applies filters, both the minimum area
filter and the manual exclusion zones filter.

(b) Temporary storage: if a frame contains at least one PD that has passed all filters,
the script saves the original image of that frame along with the coordinates of
the bounding boxes (see Figure 19b,c of the valid PD).
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3. YOLOv8 dataset generation: once the entire video has been analyzed, this final
phase takes all the valid data collected and organizes it into the folder structure
and file formats required by YOLOv8. This includes splitting the data into train-
ing/validation/test sets, normalizing the coordinates, and creating the .yaml configu-
ration file.

   
(a) (b) (c) 

Figure 19. Background and PDs with bounding boxes. (a) Background image. (b) Three PDs with
their bounding boxes. (c) One PD with its bounding box. PDs appear as red dots and bounding boxes
appear as green.

Figure 19a shows the base or background image used as a reference, while Figure 19b,c
show images with three PDs and one PD, respectively, as well as their bounding boxes.

4.1.2. Training Results

Three image series were used to train the CNN. The PD series occurring within the
dielectric oil corresponds to an average voltage of 10 kV, 13 kV, and 16 kV, respectively.
The total dataset consists of 4457 images, managed and labeled using the semi-automatic
system explained in the flowchart represented in Figure 18. For the training and evaluation
process, the dataset was divided into three subsets:

Training set: 2967 images.
Validation set: 982 images.
Test set: 508 images.

The training environment is the same as for the DDX image training seen in Section 3.
The YOLOv8 model was trained in four iterations: the first and second with 100 epochs,
the third with 200, and the fourth, to ensure convergence, with 523. Some images from
this dataset with box labeling in YOLOv8 format can be seen in Figure 19b,c. The training
speed is 18.9 s per epoch. This demonstrates a very fast experimentation cycle, allowing for
efficient model iteration and tuning.

The implemented object detector is based on a deep CNN architecture optimized for
inference. The model consists of 92 fused computational layers, a technique that improves
speed by combining operations such as convolution and batch normalization. With a
total of 25,840,339 parameters, the model has a high capacity to learn and represent the
complex visual characteristics of the PD of interest. Its computational load is quantified at
78.7 GFLOPs, a key metric that indicates the required processing demand and positions
the model as a robust solution, suitable for running on GPU-accelerated hardware.

The evolution of performance metrics during training provides crucial information
about the model’s learning process. Figure 20a,b depicts the Training vs. Validation Box
Loss and Classification Loss curves, respectively. Figure 21a,b illustrates the Training vs.
Validation DFL and Training Precision curves over 520 epochs, consisting of 982 images.
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(a) (b) 

Figure 20. Training vs. Validation Box and Classification curves. (a) Training vs. Validation Box Loss.
(b) Training vs. Validation Classification Loss.

  
(a) (b) 

Figure 21. Training vs. Validation DFL and Training Precision curves. (a) Training vs. Validation DFL
Loss. (b) Training Precision.

Consistent behavior is observed across the three loss graphs: Box Loss, Classification
Loss, and DFL. During the first 375 epochs, the model demonstrates an effective learning
phase. The loss curves for both training (solid blue line) and validation (dashed orange line)
slope downward simultaneously. This indicates that the model is generalizing correctly,
improving its ability to locate Box Losses, correctly classify PD (Classification Loss), and
refine the DFL on unseen data.

However, starting at epoch 375, a clear inflection point becomes evident, signaling
the onset of overfitting. While the training set loss continues its downward trend, the
three validation set loss metrics reverse their trajectory and begin to increase steadily.
This phenomenon is a classic indicator that the model has begun to memorize the specific
characteristics and noise of the training set, losing its ability to generalize to new data.
Therefore, the model with the best performance is not the one obtained at the end of
training, but the one whose weights correspond to the minimum point of the validation
loss, around epoch 375.

To mitigate this effect and ensure the selection of the model with the best generalization
capacity, a strategy that works as an implicit early stopping mechanism was implemented.
Specifically, for the final evaluation and all subsequent inferences, the model weights
corresponding to the last training epoch were not used, but rather those saved from the
epoch that recorded the minimum validation loss. This practice ensures that the selected
model is the one that demonstrated the best performance on data not seen during training.

While this method was effective for the scope of our study, it is worth mentioning that
there are additional regularization techniques that could be explored in future work to fur-
ther robust the model against overfitting. Incorporating dropout layers into the architecture
or applying a more aggressive data augmentation pipeline—including transformations
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such as random crops, stronger color variations, or mixup—could allow for longer training
periods without the risk of overfitting, potentially improving the model’s generalization.

Regarding Precision, the graph in Figure 21b shows its evolution on the training set,
where it stabilizes at an average value close to 0.77. This behavior suggests that, even on
the training data, the model does not achieve perfect accuracy. This can be attributed to the
nature of the dataset, which likely contains a subset of PDs that are intrinsically difficult to
detect, such as very small-area or low-contrast PDs. The model assigns a lower confidence
score to these complex detections which, when averaged over the entire set, results in an
accuracy metric that does not reach higher values. The constant fluctuation in the accuracy
curve reflects the model’s continuous effort to adjust its predictions to this PD variability.

In conclusion, the analysis of the training curves confirms the attainment of a functional
model but also underscores the critical importance of employing an early stopping strategy
or selecting the model based on the minimum validation loss to avoid deploying an
overfitted and underperforming model in real-world applications.

4.2. Inference in Operational Scenarios

Once the CNN was trained, the model’s performance was evaluated on the inference
task using three independent test videos, corresponding to PDs generated under voltages
of 10 kV, 13 kV, and 16 kV. The model’s efficiency is remarkable, with an inference time of
just 1.2 ms per frame. This translates into a theoretical processing capacity of approximately
833 FPS, confirming its suitability for real-time applications or for analyzing large volumes
of video.

Figure 22 shows examples of inference on individual frames for each voltage level.
The model is observed to correctly identify PDs under all conditions. The variability in the
assigned confidence scores is notable. While events at 10 kV and 13 kV are detected with
high confidence (0.91), 16 kV receives a more dispersed range of scores (0.92, 0.84, and even
0.39 for a weaker PD). This behavior is consistent with the analysis of the training accuracy
curve and demonstrates the model’s ability to quantify the certainty of its own detections.

   
(a) (b) (c) 

Figure 22. PD inference and confidence estimated by CNN for 10 kV, 13 kV and 16 kV. (a) Volt-
age of 10 kV between electrodes. (b) Voltage of 13 kV between electrodes. (c) Voltage of 16 kV
between electrodes.

A more in-depth analysis is obtained by accumulating all detections over each video,
lasting 45 s in this case. Figure 23 provides a visualization of the accumulated PD density
over the image. In addition, Figures 24–26 provide a detailed analysis of their spatial
distribution, area and detection confidence.



Electronics 2025, 14, 3916 28 of 32

   
(a) (b) (c) 

Figure 23. Distribution of centers of PD inference estimated by CNN for 10 kV, 13 kV and 16 kV.
(a) Voltage of 10 kV between electrodes. (b) Voltage of 13 kV between electrodes. (c) Voltage of 16 kV
between electrodes. The red diamonds correspond to the accumulated PDs.

  
(a) (b) 

Figure 24. Cumulative distribution of PD centers and magnitude of each associated box in pixels2

and confidence of each point for 10 kV. (a) Cumulative PD with box area. (b) Cumulative PD
with Confidence.

  
(a) (b) 

Figure 25. Cumulative distribution of PD centers and magnitude of each associated box in pixels2

and confidence of each point for 13 kV. (a) Cumulative PD with box area. (b) Cumulative PD
with Confidence.
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(a) (b) 

Figure 26. Cumulative distribution of PD centers and magnitude of each associated box in pixels2

and confidence of each point for 16 kV. (a) Cumulative PD with box area. (b) Cumulative PD
with Confidence.

The following conclusions can be drawn:

(a) Correlation between voltage and discharge activity: there is a clear relationship
between the voltage applied to the electrodes and the number of detected PDs. At
10 kV, 1582 PDs were accumulated (Figure 23a). As the voltage is increased to 13 kV,
the activity increases significantly, recording 2050 PDs (Figure 23b). However, at 16 kV,
the total number of detected PD drops slightly to 1981 (Figure 23c). A reasonable
hypothesis for this small decrease is that at higher energies the PDs are larger and
may merge, being detected by the model as a single PD with a larger area instead of
multiple smaller PDs.

(b) Spatial expansion of activity: the scatter plots shown in Figures 24–26 visually confirm
that the area of discharge activity expands with increasing voltage. The cluster of
points, initially highly concentrated in the dielectric space at 10 kV, expands both
vertically and horizontally at 13 kV and, more pronouncedly, at 16 kV. This suggests
that at higher voltage levels in the dielectric, PDs are not only more frequent but also
occupy a larger volume.

(c) Increasing the detection area and correlation with PD confidence: the most revealing
analysis comes from the direct comparison between the area and confidence of the PD
in Figures 24–26:

Area distribution (Figures 24a–26a): at 10 kV, the vast majority of PDs are small in
area (blue and green dots). At 13 kV, a slight increase in the average area is observed.
The change is important at 16 kV, where a significant presence of large-area PDs appears,
represented by yellow and orange colors.

Confidence distribution (Figures 24b–26b): complementarily, the analysis of detection
confidence provides a new layer of information. A strong positive correlation is observed
between the area of a PD and the confidence with which it is detected. Larger PDs with
warm colors in Figures 24a–26a consistently correspond to high-confidence detections, with
warm colors close to 1.0 in Figures 24b–26b. This is physically consistent. Larger and more
energetic PDs are visually clearer and therefore more confidently identified by the model.
Conversely, low-confidence points—cool colors in Figures 24b–26b—tend to correspond to
smaller PDs, which are harder to distinguish from background noise.

The results of this study should be interpreted considering the substantial improve-
ments our model offers compared to traditional approaches. The innovation of this work
lies not simply in the application of an advanced classification algorithm, but in a redesign
of the PD diagnostic workflow.
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First, we have demonstrated that it is possible to convert a conventional measuring
instrument into an intelligent, autonomous sensor. Unlike models that require already
digitized data, our system automates the extraction of information directly from a screen,
eliminating the need for manual intervention or costly hardware upgrades. This intelligence
applied to legacy equipment represents a practical and scalable contribution.

Second, the fusion of quantified electrical information with the spatial and morpho-
logical characterization of optical images offers an enriched diagnosis. While a traditional
unimodal model can identify the severity of a discharge (the “quantum”), our bimodal
approach adds crucial context by also answering the “where” and “how” questions. This
synergy between quantitative and qualitative data is the system’s main strength, allowing
for a much deeper and more complete understanding of the PD phenomenon.

5. Conclusions
This work presents an innovative bimodal approach for laboratory PD analysis

through training of a CNN based on YOLOv8.
Firstly, a conventional DDX-type PD electrical detector is enhanced by endowing it

with smart capabilities. A system is developed capable of automatically reading and inter-
preting data displayed on the electrical detector screen, such as discharge magnitude, pulse
count, and applied voltage. In this way, we transform a passive conventional instrument
into a smart and autonomous source of digitized and structured data. The mean precision
in the training was 0.91.

Concurrently, an optical visualization system using a high-quality camera is employed
to capture direct images of PDs occurring in the dielectric oil. In addition, the training
dataset for the camera is generated semi-automatically using a Python program. These
images provide complementary qualitative and quantitative information, enabling the
classification of discharge types based on their visual characteristics. This offers a new
and complementary dimension providing the spatial location and morphology of PDs.
Image analysis makes it possible to identify exactly where the PDs originate and how they
propagate between the electrodes, vital information for diagnosing the exact point of failure
or insulation degradation. For electrical voltages of 10 kV, 13 kV and 16 kV, PDs were
detected with confidence scores of up to 0.92.

This synergy offers a more complete, accurate, and automated diagnosis of PD be-
havior in dielectric oils, improving the understanding of degradation mechanisms and the
operational reliability of electrical assets. In this way, both systems, operating in parallel,
enhance each other. The DDX electrical detector quantifies the charge, providing a measure
of the magnitude of the problem, while the optical detector finds the location of the source
of the problem. The fusion of this bimodal information, the electrical magnitude and the
spatiotemporal distribution, allows for a much more complete and robust diagnosis of the
dielectric insulation oil condition than could be achieved with either system alone. This
approach represents a significant advance toward smarter and more accurate monitoring
systems, capable of not only detecting the presence of PDs but also identifying their root
cause and predicting failures more effectively.
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