Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/149403
DC FieldValueLanguage
dc.contributor.authorMonzón Verona, José Miguelen_US
dc.contributor.authorGarcia-Alonso Montoya, Santiagoen_US
dc.contributor.authorSantana Martin, Francisco Jorgeen_US
dc.date.accessioned2025-10-06T13:49:32Z-
dc.date.available2025-10-06T13:49:32Z-
dc.date.issued2025en_US
dc.identifier.issn2079-9292en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/149403-
dc.description.abstractThis study presents an innovative bimodal approach for laboratory partial discharge (PD) analysis using a YOLOv8-based convolutional neural network (CNN). The main contribution consists, first, in the transformation of a conventional DDX-type electrical detector into a smart and autonomous data source. By training the CNN, a system capable of automatically reading and interpreting the data from the detector display—discharge magnitude and applied voltage—is developed, achieving an average training accuracy of 0.91 and converting a passive instrument into a digitalized and structured data source. Second, and simultaneously, an optical visualization system captures direct images of the PDs with a high-resolution camera, allowing for their morphological characterization and spatial distribution. For electrical voltages of 10, 13, and 16 kV, PDs were detected with a confidence level of up to 0.92. The fusion of quantitative information intelligently extracted from the electrical detector with qualitative characterization from optical analysis offers a more complete and robust automated diagnosis of the origin and severity of PDs.en_US
dc.languageengen_US
dc.relation.ispartofElectronics (Switzerland)en_US
dc.subject3306 Ingeniería y tecnología eléctricasen_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherPartial dischargesen_US
dc.subject.otherDielectric oilen_US
dc.subject.otherElectrical sensoren_US
dc.subject.otherOptical sensoren_US
dc.subject.otherFault diagnosisen_US
dc.subject.otherPredictive maintenanceen_US
dc.subject.otherArtificial intelligenceen_US
dc.subject.otherYOLOv8en_US
dc.titleFusion of Electrical and Optical Methods in the Detection of Partial Discharges in Dielectric Oils Using YOLOv8en_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/electronics14193916en_US
dc.identifier.scopus105019060054-
dc.identifier.isi001593601300001-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid26531597500-
dc.contributor.authorscopusid35106946100-
dc.contributor.authorscopusid26531766200-
dc.identifier.eissn2079-9292-
dc.identifier.issue19-
dc.relation.volume14en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages32en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Monzón-Verona, JM-
dc.contributor.wosstandardWOS:García-Alonso, S-
dc.contributor.wosstandardWOS:Santana-Martín, FJ-
dc.date.coverdateOctubre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,615
dc.description.jcr2,6
dc.description.sjrqQ2
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,5-
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUMA: Instrumentación avanzada-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Eléctrica-
crisitem.author.deptGIR IUMA: Instrumentación avanzada-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0001-9694-269X-
crisitem.author.orcid0000-0003-4389-0632-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameMonzón Verona, José Miguel-
crisitem.author.fullNameGarcia-Alonso Montoya, Santiago-
crisitem.author.fullNameSantana Martin, Francisco Jorge-
Appears in Collections:Artículos
Adobe PDF (8,74 MB)
Show simple item record

Page view(s)

107
checked on Jan 15, 2026

Download(s)

14
checked on Jan 15, 2026

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.