Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/149403
Título: Fusion of Electrical and Optical Methods in the Detection of Partial Discharges in Dielectric Oils Using YOLOv8
Autores/as: Monzón Verona, José Miguel 
Garcia-Alonso Montoya, Santiago 
Santana Martin, Francisco Jorge 
Clasificación UNESCO: 3306 Ingeniería y tecnología eléctricas
3307 Tecnología electrónica
Palabras clave: Partial discharges
Dielectric oil
Electrical sensor
Optical sensor
Fault diagnosis, et al.
Fecha de publicación: 2025
Publicación seriada: Electronics 
Resumen: This study presents an innovative bimodal approach for laboratory partial discharge (PD) analysis using a YOLOv8-based convolutional neural network (CNN). The main contribution consists, first, in the transformation of a conventional DDX-type electrical detector into a smart and autonomous data source. By training the CNN, a system capable of automatically reading and interpreting the data from the detector display—discharge magnitude and applied voltage—is developed, achieving an average training accuracy of 0.91 and converting a passive instrument into a digitalized and structured data source. Second, and simultaneously, an optical visualization system captures direct images of the PDs with a high-resolution camera, allowing for their morphological characterization and spatial distribution. For electrical voltages of 10, 13, and 16 kV, PDs were detected with a confidence level of up to 0.92. The fusion of quantitative information intelligently extracted from the electrical detector with qualitative characterization from optical analysis offers a more complete and robust automated diagnosis of the origin and severity of PDs.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/149403
ISSN: 2079-9292
DOI: 10.3390/electronics14193916
Fuente: Electronics [ISSN 2079-9292],v. 14, (Octubre 2025)
Colección:Artículos
Adobe PDF (8,74 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.