Please use this identifier to cite or link to this item:
https://accedacris.ulpgc.es/jspui/handle/10553/147318
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Vera, Francisca V. Vera | en_US |
dc.contributor.author | Munoz, Leonardo | en_US |
dc.contributor.author | Pérez, Francisco | en_US |
dc.contributor.author | Alvarez, Lisandra Bravo | en_US |
dc.contributor.author | Montejo-Sanchez, Samuel | en_US |
dc.contributor.author | Matus Icaza, Vicente | en_US |
dc.contributor.author | Rodriguez-Lopez, Lien | en_US |
dc.contributor.author | Saavedra, Gabriel | en_US |
dc.date.accessioned | 2025-09-22T09:21:12Z | - |
dc.date.available | 2025-09-22T09:21:12Z | - |
dc.date.issued | 2025 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | https://accedacris.ulpgc.es/jspui/handle/10553/147318 | - |
dc.description.abstract | The growing number of connected devices has strained traditional radio frequency wireless networks, driving interest in alternative technologies such as optical wireless communications (OWC). Among OWC solutions, optical camera communication (OCC) stands out as a cost-effective option because it leverages existing devices equipped with cameras, such as smartphones and security systems, without requiring specialized hardware. This paper proposes a novel deep learning-based detection and classification model designed to optimize the receiver's performance in an OCC system utilizing color-shift keying (CSK) modulation. The receiver was experimentally validated using an 8x8 LED matrix transmitter and a CMOS camera receiver, achieving reliable communication over distances ranging from 30 cm to 3 m under varying ambient conditions. The system employed CSK modulation to encode data into eight distinct color-based symbols transmitted at fixed frequencies. Captured image sequences of these transmissions were processed through a YOLOv8-based detection and classification framework, which achieved 98.4% accuracy in symbol recognition. This high precision minimizes transmission errors, validating the robustness of the approach in real-world environments. The results highlight OCC's potential for low-cost applications, where high-speed data transfer and long-range are unnecessary, such as Internet of Things connectivity and vehicle-to-vehicle communication. Future work will explore adaptive modulation and coding schemes as well as the integration of more advanced deep learning architectures to improve data rates and system scalability. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Sensors (Switzerland) | en_US |
dc.source | Sensors,v. 25 (17), (Septiembre 2025) | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Vision | en_US |
dc.subject.other | Convolutional Neural Network (Cnn) | en_US |
dc.subject.other | Deep Learning | en_US |
dc.subject.other | Optical Camara Communication (Occ) | en_US |
dc.title | High-Accuracy Deep Learning-Based Detection and Classification Model in Color-Shift Keying Optical Camera Communication Systems | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3390/s25175435 | en_US |
dc.identifier.isi | 001570134000001 | - |
dc.identifier.eissn | 1424-8220 | - |
dc.identifier.issue | 17 | - |
dc.relation.volume | 25 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.description.numberofpages | 13 | en_US |
dc.utils.revision | No | en_US |
dc.contributor.wosstandard | WOS:Vera, FVV | - |
dc.contributor.wosstandard | WOS:Muñoz, L | - |
dc.contributor.wosstandard | WOS:Pérez, F | - |
dc.contributor.wosstandard | WOS:Alvarez, LB | - |
dc.contributor.wosstandard | WOS:Montejo-Sánchez, S | - |
dc.contributor.wosstandard | WOS:Icaza, VM | - |
dc.contributor.wosstandard | WOS:Rodríguez-López, L | - |
dc.contributor.wosstandard | WOS:Saavedra, G | - |
dc.date.coverdate | Septiembre 2025 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
dc.description.sjr | 0,786 | |
dc.description.jcr | 3,4 | |
dc.description.sjrq | Q1 | |
dc.description.jcrq | Q2 | |
dc.description.scie | SCIE | |
dc.description.miaricds | 10,8 | |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR IDeTIC: División de Fotónica y Comunicaciones | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.orcid | 0000-0003-4262-3882 | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación | - |
crisitem.author.fullName | Matus Icaza, Vicente | - |
Appears in Collections: | Artículos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.