Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/147318
DC FieldValueLanguage
dc.contributor.authorVera, Francisca V. Veraen_US
dc.contributor.authorMunoz, Leonardoen_US
dc.contributor.authorPérez, Franciscoen_US
dc.contributor.authorAlvarez, Lisandra Bravoen_US
dc.contributor.authorMontejo-Sanchez, Samuelen_US
dc.contributor.authorMatus Icaza, Vicenteen_US
dc.contributor.authorRodriguez-Lopez, Lienen_US
dc.contributor.authorSaavedra, Gabrielen_US
dc.date.accessioned2025-09-22T09:21:12Z-
dc.date.available2025-09-22T09:21:12Z-
dc.date.issued2025en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/147318-
dc.description.abstractThe growing number of connected devices has strained traditional radio frequency wireless networks, driving interest in alternative technologies such as optical wireless communications (OWC). Among OWC solutions, optical camera communication (OCC) stands out as a cost-effective option because it leverages existing devices equipped with cameras, such as smartphones and security systems, without requiring specialized hardware. This paper proposes a novel deep learning-based detection and classification model designed to optimize the receiver's performance in an OCC system utilizing color-shift keying (CSK) modulation. The receiver was experimentally validated using an 8x8 LED matrix transmitter and a CMOS camera receiver, achieving reliable communication over distances ranging from 30 cm to 3 m under varying ambient conditions. The system employed CSK modulation to encode data into eight distinct color-based symbols transmitted at fixed frequencies. Captured image sequences of these transmissions were processed through a YOLOv8-based detection and classification framework, which achieved 98.4% accuracy in symbol recognition. This high precision minimizes transmission errors, validating the robustness of the approach in real-world environments. The results highlight OCC's potential for low-cost applications, where high-speed data transfer and long-range are unnecessary, such as Internet of Things connectivity and vehicle-to-vehicle communication. Future work will explore adaptive modulation and coding schemes as well as the integration of more advanced deep learning architectures to improve data rates and system scalability.en_US
dc.languageengen_US
dc.relation.ispartofSensors (Switzerland)en_US
dc.sourceSensors,v. 25 (17), (Septiembre 2025)en_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherVisionen_US
dc.subject.otherConvolutional Neural Network (Cnn)en_US
dc.subject.otherDeep Learningen_US
dc.subject.otherOptical Camara Communication (Occ)en_US
dc.titleHigh-Accuracy Deep Learning-Based Detection and Classification Model in Color-Shift Keying Optical Camera Communication Systemsen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s25175435en_US
dc.identifier.isi001570134000001-
dc.identifier.eissn1424-8220-
dc.identifier.issue17-
dc.relation.volume25en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages13en_US
dc.utils.revisionNoen_US
dc.contributor.wosstandardWOS:Vera, FVV-
dc.contributor.wosstandardWOS:Muñoz, L-
dc.contributor.wosstandardWOS:Pérez, F-
dc.contributor.wosstandardWOS:Alvarez, LB-
dc.contributor.wosstandardWOS:Montejo-Sánchez, S-
dc.contributor.wosstandardWOS:Icaza, VM-
dc.contributor.wosstandardWOS:Rodríguez-López, L-
dc.contributor.wosstandardWOS:Saavedra, G-
dc.date.coverdateSeptiembre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,786
dc.description.jcr3,4
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,8
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IDeTIC: División de Fotónica y Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.orcid0000-0003-4262-3882-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameMatus Icaza, Vicente-
Appears in Collections:Artículos
Adobe PDF (2,34 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.