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Abstract

The growing number of connected devices has strained traditional radio frequency wireless
networks, driving interest in alternative technologies such as optical wireless communica-
tions (OWC). Among OWC solutions, optical camera communication (OCC) stands out
as a cost-effective option because it leverages existing devices equipped with cameras,
such as smartphones and security systems, without requiring specialized hardware. This
paper proposes a novel deep learning-based detection and classification model designed to
optimize the receiver’s performance in an OCC system utilizing color-shift keying (CSK)
modulation. The receiver was experimentally validated using an 8 x 8 LED matrix trans-
mitter and a CMOS camera receiver, achieving reliable communication over distances
ranging from 30 cm to 3 m under varying ambient conditions. The system employed CSK
modulation to encode data into eight distinct color-based symbols transmitted at fixed
frequencies. Captured image sequences of these transmissions were processed through a
YOLOv8-based detection and classification framework, which achieved 98.4% accuracy in
symbol recognition. This high precision minimizes transmission errors, validating the ro-
bustness of the approach in real-world environments. The results highlight OCC’s potential
for low-cost applications, where high-speed data transfer and long-range are unnecessary,
such as Internet of Things connectivity and vehicle-to-vehicle communication. Future work
will explore adaptive modulation and coding schemes as well as the integration of more
advanced deep learning architectures to improve data rates and system scalability.

Keywords: convolutional neural network (CNN); deep learning; optical camara communi-
cation (OCC)

1. Introduction

Every year, the technology and communications landscape undergoes exponential
growth, driven by the increasing demand for high-speed Internet services. However, while
this surge in demand emphasizes the need to improve network capacity [1], saturation of the
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radio frequency (RF) spectrum presents significant challenges [2]. These factors underscore
the imperative need to explore new technologies [3] that, although not directly competing
with RF in terms of speed, can effectively complement its use in various scenarios [4].

In this context, Optical Wireless Communication (OWC) has emerged as an innovative
and viable alternative to the saturated RF spectrum, distinguished by its operation within
an unlicensed spectrum and its potential to deliver significantly greater bandwidth than
traditional RF systems [5]. Within the realm of OWC, Optical Camera Communication
(OCC) technology has experienced substantial technological advancements and renewed
research interest. OCC is incorporated in the IEEE 802.15.7 standard [6], which reinforces
its feasibility for practical applications and its potential for large-scale adoption in specific
environments. This standard introduces Color-Shift Keying (CSK) modulation, employed
in this study for its capability to transmit bit streams by varying the colors of a light source.

OCC utilizes hardware from mobile devices to capture video, which acts as a receiver and
provides connectivity [7]. Employing light-emitting diodes for data transmission capitalizes on
pre-existing infrastructure, thereby significantly reducing deployment costs [8]. Furthermore,
OCC derives considerable advantage from continuous advancements in image processing and
Deep Learning (DL) technologies to enhance the accuracy and reliability of the receiver [9].
The application of Deep Learning techniques in OCC has been demonstrated to markedly
reduce errors in the identification and tracking in receiver devices, even under challenging
conditions such as abrupt lighting changes or the presence of obstacles [10].

Several papers in the scientific literature have proposed deep learning-based algorithms
to enhance OCC [11-14]. In [11], an OCC technique for smart factory systems is introduced,
which employs an LED array as the transmitter and utilizes On-Off keying modulation. Arti-
ficial intelligence is incorporated for LED detection, resulting in a significant improvement
in performance compared to traditional methods. By optimizing parameters such as shut-
ter speed, camera focal length, and appropriate channel coding, the system enables stable
communication links over distances of up to 7 m. Conversely, ref. [12] proposes the design
and implementation of a real-time OCC system capable of operating efficiently under high
mobility conditions. For this purpose, the YOLOvS object detection algorithm is employed,
which allows for accurate identification of an LED array used as the emission source. The
authors of [13] proposed a display-to-camera optical communication system that uses com-
plementary color barcodes in conjunction with deep neural networks to achieve seamless
transmission and reliable communication during normal video playback. This system employs
the YOLO model to continuously detect the barcode region on electronic displays and utilizes
convolutional neural networks to accurately identify pilot symbols and data embedded in the
received images. Furthermore, ref. [14] reports a study on an OCC-based vehicle-to-vehicle
communication system using LED arrays as transmitters and cameras as receivers. In addi-
tion, other works have addressed the design of OCC systems capable of maintaining reliable
communication in dynamic conditions, such as vehicular and underwater environments. For
instance, ref. [15] applied deep reinforcement learning to achieve ultra-reliable, low-latency
vehicular links, ref. [16] developed a channel-adaptive decoding method for underwater OCC,
and [17] employed machine learning to meet uRLLC requirements in vehicular networks.

Faced with the unresolved challenge of ensuring stability and accuracy at practical
distances and dynamic conditions in OCC systems, this work proposes an approach based
on the efficient use of deep learning that goes beyond detecting signal changes or black-
and-white symbols by innovatively leveraging the information contained in color. The
main contributions of this paper are as follows:

¢ The implementation and validation of a novel, high-accuracy deep learning-based
receiver architecture for an OCC system. Unlike previous approaches that focus on
detecting symbol transitions [18], our proposal uses color as the primary information
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carrier, focusing on classification of color symbols through the YOLOv8 model, applied
for the first time in this context.

*  The experimental evaluation over communication distances ranging from 30 cm to
3 m, ensuring the results” applicability to real-world scenarios and confirming system
robustness.

*  The integration of advanced data augmentation techniques, including noise addi-
tion and overlaying real-world environmental images, to improve robustness and
generalization.

¢ A comprehensive hyperparameter study assessing whether YOLOvV8's default settings
are optimal, further verifying the model’s suitability for this specific application.

The remainder of this paper is structured as follows: Section 2 describes the method-
ology, presenting the proposed Deep Learning-based classifier, detailing the phases of
data collection, data preprocessing, model selection and training, as well as validation
and adjustment of hyperparameters. Section 3 presents the experiments and discusses the
results obtained in the validation of the proposal. Finally, Section 4 summarizes the main
conclusions and outlines potential future research directions for further extension.

2. Deep Learning-Based Classifier

In this section, the design of the system architecture is presented. The challenges
inherent to symbol classification in this specific context are addressed. This involves
considering aspects such as ambient illumination, channel distance, symbol variability, and
algorithm robustness against possible distortions or interferences.

2.1. Data Collection

The experimental setup used to generate the dataset is shown in Figure 1. It consists
of a transmitter (LED matrix and microcontroller) and a receiver (camera and processing
unit), as described below.

(a) (b)
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Data Microcontroller - LED Matrix = 2 -
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Images |

(c)
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Figure 1. System architecture and experimental setup: (a) Corresponding block diagram illustrating
the system components and data flow; (b) experimental setup used for data acquisition; (c) colors on
the LED matrix.

An LED matrix controlled using a microcontroller is used as a transmitter. As a
modulation format, we used 8-Color Shift Keying (8-CSK) with colors: yellow, blue, white,
cyan, magenta, orange, red, and green. This follows the IEEE 802.15.7-2011 standard [19],
which sets design rules for the 8-CSK constellation to achieve reliable performance. In
8-CSK, every symbol carries 3 bits of information. All symbols used the same spatial
arrangement in the LED matrix. To reduce the blooming effect, common in OCC, each
symbol includes white LEDs at the top and bottom rows (see Figure 1c). In addition, the
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microcontroller applies gamma correction to adjust for the nonlinear behavior of the LEDs,
using the following transformation on each RGB channel:

Cin 7
Cout = 255 g ) 1)

where C,,; and C;,, represent the output and input intensity values of the red, green, and
blue channels, respectively. These values are constrained to the range [0, 255]. In this
work, the gamma correction factor is set to y = 3. Each transmission sequence consisted
of consecutively displaying the eight color symbols on the LED matrix at a frequency of
10 Hz, with each symbol active for a fixed time duration. In our work, eight colors for CSK
modulation were chosen to balance data rate and detection accuracy. While it is possible
to further expand the color alphabet, this introduces inherent challenges, particularly in
distinguishing between visually similar colors, as shown in Table 1.

Table 1. RGB values of the different classes.

Class R G B
Yellow 255 255 0
Blue 0 0 255
White 255 255 255
Cyan 0 255 255
Mangenta 255 0 255
Orange 255 165 0
Red 255 0 0
Green 0 255 0

The receiver was a V2 camera connected to a Raspberry Pi 4. This camera integrates
a Sony IMX219 CMOS image sensor [20]. The camera was configured to record video
at 30 frames per second (FPS), resulting in an oversampling factor of 1.5, considering a
transmitter symbol rate of 10 Hz. The captured videos contain frames where each symbol
is visible under different conditions.

Five-second videos of the symbol sequences were recorded under varied experimental con-
ditions to introduce diversity in the dataset. The parameters adjusted in each experiment were:

e Channel distance: 50 cm, 100 cm, 150 cm, 300 cm.

e  Camera exposure time: 500 ps, 1000 us, 4000 ps, 6000 ps.

*  Angle between TX and RX: aligned and unaligned matrix.

¢  Controlled light environment: dark room and illuminated room.

Each video was processed frame by frame. Frames affected by symbol transitions
or motion artifacts (such as frame 2 in Figure 2) were manually discarded, retaining only
clean frames that represent each class [21]. Due to oversampling, an average of three usable
images per class was extracted from each sequence. In total, 3,247 images were collected for
training and validation. A separate test set was later acquired under the same parameter
ranges, but at different random combinations of distance, angle, and exposure time within
the laboratory. This ensured the test set included unseen samples that still followed the
same distribution as the training data.
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Figure 2. Frames captured from the cyan and magenta classes when oversampling.

To provide a comprehensive overview of the experimental conditions, the key system
parameters used for data collection are summarized in Table 2.

Table 2. Key System Parameters for Experimental Setup.

Parameter Category Specifics

Transmitter (TX)

LED Matrix 8 x 8 LED array

Modulation Scheme Color-Shift Keying (CSK) with 8 levels
Transmission Frequency 10 Hz

Receiver (RX)

Camera Type CMOS V2 with Sony IMX219 sensor
Frame Rate 30 fps

Channel & Environment

Communication Distance 30cmto3m

Lighting Conditions Dark room, illuminated room
TX-RX Alignment Aligned and unaligned

2.2. Data Preprocessing

Data pre-processing consists of four stages: data augmentation, dataset splitting, image
resizing, and pixel value normalization. The data augmentation technique was applied
directly to the raw data, i.e., to the data extracted from the captured videos, without having
received any additional operation beyond the removal of non-useful frames. For this, the
Albumentations library was used to first define the transformations and then apply them to
all the collected images. In addition to these transformations, two additional components
were incorporated: the addition of white Gaussian noise with different standard deviations
(0), and the superimposition of an office image on the images of the training, validation,
and test sets.

Figure 3 illustrates the two transformations performed, which were applied randomly
to the images. Thus, the training and validation samples were duplicated and, subsequently,
one of three operations was applied: Albumentations transformations, noise addition (with
mean 0 and a standard deviation randomly selected from the values (0.7,1,1.5,2,5), or
office image overlay. All these operations have the same probability of being applied to
images duplicated from the original data sets. The use of the overlay image was intended
to increase the variability in the dataset, thereby enabling the model to learn to recognize
the LED matrix in a wider variety of scenarios. This additional variability was necessary
due to the exposure times used.

The samples intended for model evaluation were also duplicated; however, only
the noise addition and image overlay operations were applied to them, excluding the
Albumentations transformations, since these were used exclusively to improve model
learning during training. The data splitting consisted of allocating 80% of the data for
training and the remaining 20% for validation, from the 6494 samples obtained after
data augmentation.
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Figure 3. Transformations performed on the images in the test set.

In the data resizing stage, a hyperparameter, known as imgsz, is set with the help of the
YOLOVS network, which is responsible for resizing the images to a predefined size. During
the training of the deep learning model, YOLOvVS allows flexibility in the input sizes by
automatically performing the resizing [22]. Normalization is an essential preprocessing
technique that adjusts the pixel values of the images to a standard range, thus facilitating
faster convergence during training and improving model performance. Normalization
is automatically and seamlessly integrated as part of the preprocessing stage in YOLOvS8
during model training. This automated preprocessing ensures that the input images are
prepared consistently and properly before being processed by the CNN. To evaluate the
balance of the generated and split dataset, the number of samples per class in each set is
obtained, as shown in Table 3.

Table 3. Number of samples per class in the datasets.

Class Training Validation Test

0: Yellow 646 162 288
1: Blue 630 158 294

2: White 670 168 290
3: Cyan 657 165 290
4: Mangenta 646 162 292
5: Orange 664 166 290
6: Red 649 163 292

7: Green 630 158 296
Total 5192 1302 2332

2.3. Model Selection and Training

To effectively address the challenge of classifying CSK symbols in real-world Optical
Camera Communication (OCC) environments, this work employs a robust deep learn-
ing approach based on the YOLOvVS family of convolutional neural networks (CNNs),
renowned for its exceptional balance between speed and accuracy. A central component of
our methodology is the use of transfer learning: instead of training a model from scratch,
which would require a vast amount of labeled data, we leverage a YOLOvS8 model pre-
trained on the large-scale ImageNet dataset. This enables the model to retain its powerful,
generalized feature extraction capabilities while being fine-tuned for the specific task of
CSK symbol classification. For our task, we adapted its main backbone, based on CSP-
Darknet, as a feature extractor and complemented it with a classification head capable
of recognizing the eight color symbol classes in our dataset. This backbone integrates
optimized convolutional modules, Cross Stage Partial layers for improved efficiency, and
Darknet Bottleneck residual connections. Finally, the Spatial Pyramid Pooling Fast layer
was replaced with a dedicated classification layer. This final layer transforms the extracted
features into output predictions. Although originally designed to support up to 1000 output
classes, the model automatically adjusts its final linear layer to 8 during training, matching
the number of CSK symbol classes present in the dataset.
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2.4. Validation and Adjustment of Hyperparameters

A model was initially trained using the default hyperparameters of YOLOVS, with
validation enabled. Subsequently, a manual tuning of the key hyperparameters such as the

initial learning rate (Ir0), optimizer choice (AdamW, SGD), and dropout rate was performed

(see Table 4), seeking a balance between accuracy, stability, and generalizability. Two values

per parameter were defined, and an exhaustive search was applied to train nine different

combinations, including the model with default values. Comparing the results, it was observed

that the model with adjusted hyperparameters does not represent an improvement compared
with the default hyperparameters. Finally, the best model was retrained for 100 epochs to
evaluate its performance robustly on the test set. Figure 4 shows the loss and the validation
results during training of the models used to adjust the hyperparameters.

T T T
—e— train

—e— validation |

Loss

0 | | |
0 5 10 15 20

Epochs
T T T
—-o— train

15] —e— validation |

Loss

0 5 10 15 20
Epochs

Loss

Loss

T

15 A —e— validation |

T T
—e— train

Epochs

1.5

T T
—e— train

—e— validation

10 15 20
Epochs

Figure 4. Learning and loss curves during model training. (a) Optimizer = AdamW, Ir0 = 0.01,
dropout = 0.0; (b) Optimizer = AdamW, Ir0 = 0.01, dropout = 0.2; (c) Optimizer = AdamW, Ir0 = 0.001,
dropout = 0.0; (d) Optimizer = AdamW, 1r0 = 0.001, dropout = 0.2.
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Table 4. Hyperparameters to be adjusted in YOLOvS.

Hyperparameter Default Values Definition
Initial learning rate. Adjusting this value is
1r0 0.01 0.01, 0.001 crucial to the optimization process, influencing
how quickly the model weights are updated.
Choice of optimizer for training. Options include
optimizer auto AdamW, SGD SGD, AdamW, etc. Affects convergence speed
and stability.
Dropout rate for regularization in classification
dropout 0.0 0.0,0.2 tasks, preventing overfitting by randomly
omitting units during training.
3. Results

This section details the performance of our YOLOvS8-based classifier in the OCC
system, beginning with a summary of the key parameters used to ensure reproducibility.
Table 5 presents the loss and accuracy results in the validation set for the various

training runs performed during this process. This table facilitates the identification of the

best hyperparameter settings for the classification task. In this table, the lowest loss value
and the highest level of accuracy achieved during the epochs of the validation stage are
presented. The validation curves (accuracy and loss vs epochs) for the reported data are

shown in Figure 5.

Table 5. Validation loss and accuracy results when training with different hyperparameter configurations.

Train Optimizer 1r0 Dropout Loss Aci(l;(;acy
1 AdamW 0.000714 0.0 1.2837 99.69
2 AdamW 0.01 0.0 1.2918 99.69
3 AdamW 0.01 0.2 1.2902 99.00
4 AdamW 0.001 0.0 1.2850 99.39
5 AdamW 0.001 0.2 1.2862 99.46
6 SGD 0.01 0.0 1.2852 99.23
7 SGD 0.01 0.2 1.2838 99.54
8 SGD 0.001 0.0 1.3046 98.46
9 SGD 0.001 0.2 1.3049 98.46
T I 1 T
o —e—train 1 —e— train 1
2F train 2 || train 2
—e— train 3 . 0.9 / '/ —e— train 3 ||
—o— train 4 éo, —e— train 4
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Q . IS .
— train 6 g train 6
g —o— train 7 51 IT —e— train 7
] . < 07 . H
g L6y train 8 |l c train 8
= —e— train 9 2 —e— train 9
> S 061 =
0.5 =
0.4 b) : : :
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Epochs Epochs

Figure 5. (a) Loss and (b) accuracy validation curves for trained models.
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In Figure 5a, the blue curve (train 1), corresponds to the best model and presents a
low loss in most epochs, starting at 1.4961 and reaching a minimum of 1.2837. The curve
shows a decline until the sixth epoch, where the loss stabilizes around 1.3. On the other
hand, in Figure 5b, it is observed that the accuracy starts 90.71%, and achieves 99.69% after
20 epochs. This indicates, at first glance, that the model has outstanding performance even
with a reduced number of iterations.

The best model from Figure 5 was selected (train 1), and was re-trained using the
best hyperparameter configuration. This process generated the training and validation
loss graphs, as well as the validation accuracy, which are shown in Figures 6a and 6b,
respectively. Training of the final model, minimum loss of 1.27 and maximum accuracy of
99.85% were achieved. This accuracy value will be used by YOLO as the criterion to select
the best model, which will be used in the test set.

1.6 T T T T 1
—e— train
1.4 —e— validation [|
0.98
1.2
i il £ 096
173} >~
3 08| 8 &
— 5
Q
06| % 0.94
0.4
0.92 | 8
0.2
0 09 nb) | | | |
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs

Figure 6. (a) Loss and (b) accuracy of the final model.

When analyzing the learning curves of the best model, trained for 100 epochs, in
Figure 6a, a marked discrepancy between training loss and validation loss is observed. The
training loss decreases rapidly, reaching very low values, while the validation loss remains
significantly higher in comparison. However, it is seen that both losses could continue to
decrease by further training the model using more epochs, suggesting that the model is
not overfitting. Figure 6b shows a high validation accuracy throughout the epochs. The
accuracy increases rapidly during the first epochs and stabilizes at values close to 98-99%.
This high validation accuracy, combined with a high validation loss, could preliminarily
indicate that the model makes correct predictions in most cases, but with low confidence
in its classifications. That is, the model assigns lower probabilities to the correct classes,
which is penalized by the loss function without affecting the overall accuracy. However,
when analyzing the probabilities associated with each sample during validation, it was
confirmed that this is not the case, as all samples were classified with reliabilities higher
than 99%.

To evaluate the performance of the final model, a separate test set was used, different
from the training and validation data. This set includes subsequently collected images
covering various experimental conditions such as channel distances of 60 cm, 70 cm,
110 cm, and 250 c¢m, as well as different combinations of exposure time, environment
variations, illumination levels, and transmitter positions. Additionally, these images were
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also processed to duplicate their quantity and. Noise and a different overlay image were
added to the duplicated set.

Predictions were made using the final model, with the results summarized in he
confusion matrix shown in Figure 7. From the confusion matrix, it is observed that most
predictions are concentrated on the main diagonal, indicating correct classification in the
vast majority of cases. Classes such as green, blue, and cyan show near-perfect accuracy,
with no errors or only one incorrect prediction. However, some specific confusions are
observed, especially in the white class, which was misclassified as yellow in eight cases
and as cyan in ten, suggesting some difficulty for the model in distinguishing between
light spectrum colors or colors possibly influenced by similar lighting conditions. Minor
errors are also recorded in other classes, such as yellow and magenta, although without
significantly affecting the overall performance of the system.

Confusion Matrix

yellow & 1 1 0 0 0 14
blue 12
white 1 8 10
E 0
2 Cyan 7 -8
Liv)
—
o
Z magenta4 O
= r6
orange{ 0
F4
red4 1
F2
green 0
T T T T T T T — 0
z 5 £ g g R b5
= & € © 8 § - ¢
> éﬂ 5 s

Predicted Labels

Figure 7. Confounding matrix before adding variability to the test set.

It can be concluded that very good results are obtained, in general; however, some
exceptions exist, especially among classes with visually similar samples, such as white and
yellow, cyan and white, or blue and magenta. This is primarily due to the phenomenon
of channel crosstalk, which causes interference between color channels as a result of
spectral overlap in the LED array and the camera’s limitations to distinguish close tones.
Additionally, factors like ambient lighting and noise in the capture system contribute to
the camera registering color mixtures rather than pure tones, leading to confusion between
these classes when interpreted by the YOLOvV8 model.

The samples in each class were correctly classified with high accuracy and, overall,
the model demonstrated a high generalization ability with an accuracy of 98.4% in the
test set. The confusion matrix, therefore, not only confirms the strong overall performance
of the model but also provides a nuanced understanding of its limitations. The strong
concentration of correct predictions along the main diagonal, notably for classes like blue
and green (with 294 and 296 correct predictions, respectively), demonstrates effective gen-
eralization under real testing conditions. However, the confusion between white, cyan, and
yellow highlights the inherent physical constraints of the optical camera communication
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system, such as channel crosstalk and sensor saturation, when processing colors requiring
high intensity across multiple RGB channels. Minor misclassifications, like magenta being
confused with blue, further reinforce these.

The strong overall accuracy and robust performance of our model against varying
distances and lighting conditions hold significant implications for its practical deployment.
A symbol recognition accuracy of approximately 98.4% translates directly into an extremely
low data transmission error rate, which is a critical requirement for safety-sensitive ap-
plications where reliability is paramount. In vehicle-to-vehicle (V2V) communication, for
example, our system could be used to reliably classify emergency signals, such as the flash-
ing lights of an ambulance or police car, or the red light of a traffic signal, providing a robust
communication channel in complex and dynamic environments. Similarly, in industrial
IoT scenarios, this high reliability is fundamental for the correct execution of machine-
to-machine commands, preventing costly operational errors. Therefore, our results not
only confirm the model’s technical efficacy but also validate its potential as a low-cost,
high-reliability solution for real-world applications where low-data-rate, high-precision
signaling is required.

In addition, system robustness in real-world applications could be further improved
through specific design improvements. For instance, the use of light diffusers in vehicular
and other outdoor scenarios would mitigate channel crosstalk, allowing color separation
under conditions such as direct sunlight or car headlight interference. Similarly, adaptive
gain control mechanisms in the camera receiver would allow automatic adjustment to
varying illumination, thereby ensuring stable detection in dynamic outdoor environments.
At the communication layer, advanced error correction coding could compensate for
residual symbol misclassifications, while temporal and spatial filtering would stabilize
detection in settings with strong motion or background variability. These enhancements,
although not implemented in this work, are challenges observed in V2V and industrial
IoT scenarios.

4. Conclusions

This paper evaluated the performance of the YOLOv8 model in symbol classification
within optical camera communication environments. The results consistently demonstrated
strong performance in all scenarios analyzed, achieving an accuracy of 98.4% on the test set,
indicating the effective generalizability of the model. Incorporating noise transformations
and varied data augmentation techniques applied to training and validation images was
essential for developing a robust and resilient model. These strategies substantially improved
generalizability, allowing the model to reach values above 93% across all evaluation metrics
for each symbol class, even when the test set included noise and previously unseen samples.

From the outset, the model was designed and trained to handle diverse and complex
conditions by simulating realistic environments during the training phase, which is essential
for its successful deployment and practical application. Misclassified samples were primarily
caused by channel crosstalk; specifically, the RGB color information captured by the image
sensor is affected by overlapping signals from the red, green, and blue channels. This
interference causes certain colors in the LED matrix, which should ideally appear as distinct
hues (e.g., white), to be perceived as different colors, such as yellow or cyan. Such distortions
highlight the inherent challenges of color-based modulation schemes in OCC systems.

For future research, two main directions are recommended. First, explore the im-
plementation of the YOLOv8 model for real-time detection and sensing in OCC applica-
tions, which could offer valuable tools for automated monitoring and the management
of low-latency optical communication systems. Second, developing a more diverse and
comprehensive dataset is essential. This dataset should encompass variations such as
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different background textures, a wider range of channel distances, diverse ambient lighting
conditions, and various indoor/outdoor scenarios, which will allow the model to generalize
across a broader spectrum of real-world environments.
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