Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/jspui/handle/10553/147257
DC FieldValueLanguage
dc.contributor.authorCuervo-Londoño, Giovanny A.en_US
dc.contributor.authorSánchez, Javieren_US
dc.contributor.authorRodríguez-Santana, Ángelen_US
dc.date.accessioned2025-09-19T18:21:09Z-
dc.date.available2025-09-19T18:21:09Z-
dc.date.issued2025en_US
dc.identifier.issn2331-8422en_US
dc.identifier.urihttps://accedacris.ulpgc.es/jspui/handle/10553/147257-
dc.description.abstractOceanographic forecasting impacts various sectors of society by supporting environmental conservation and economic activities. Based on global circulation models, traditional forecasting methods are computationally expensive and slow, limiting their ability to provide rapid forecasts. Recent advances in deep learning offer faster and more accurate predictions, although these data-driven models are often trained with global data from numerical simulations, which may not reflect reality. The emergence of such models presents great potential for improving ocean prediction at a subregional domain. However, their ability to predict fine-scale ocean processes, like mesoscale structures, remains largely unknown. This work aims to adapt a graph neural network initially developed for global weather forecasting to improve subregional ocean prediction, specifically focusing on the Canary Current upwelling system. The model is trained with satellite data and compared to state-of-the-art physical ocean models to assess its performance in capturing ocean dynamics. Our results show that the deep learning model surpasses traditional methods in precision despite some challenges in upwelling areas. It demonstrated superior performance in reducing RMSE errors compared to ConvLSTM and the GLORYS reanalysis, particularly in regions with complex oceanic dynamics such as Cape Ghir, Cape Bojador, and Cape Blanc. The model achieved improvements of up to 26.5% relative to ConvLSTM and error reductions of up to 76% in 5-day forecasts compared to the GLORYS reanalysis at these critical locations, highlighting its enhanced capability to capture spatial variability and improve predictive accuracy in complex areas. These findings suggest the viability of adapting meteorological data-driven models for improving subregional medium-term ocean forecasting.en_US
dc.languageengen_US
dc.relation.ispartofArXiv.orgen_US
dc.sourceArXiv.org. [2331-8422], v.2, 6 jun,2025en_US
dc.subject251007 Oceanografía físicaen_US
dc.subject.otherSea surface temperature forecastingen_US
dc.subject.otherGraph neural networksen_US
dc.subject.otherCanary Current Upwelling Systemen_US
dc.subject.otherData-driven ocean predictionen_US
dc.subject.otherOperational oceanographyen_US
dc.titleDeep Learning Weather Models for Subregional Ocean Forecasting: A Case Study on the Canary Current Upwelling Systemen_US
dc.typeArticleen_US
dc.identifier.doi10.48550/arXiv.2505.24429en_US
dc.relation.volume2en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages28en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR ECOAQUA: Oceanografía Física y Geofísica Aplicada-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0001-8514-4350-
crisitem.author.orcid0000-0003-1960-6777-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNameSánchez Pérez, Javier-
crisitem.author.fullNameRodríguez Santana, Ángel-
Appears in Collections:Artículos
Adobe PDF (13,7 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.