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ABSTRACT

Oceanographic forecasting impacts various sectors of society by supporting environmental conserva-
tion and economic activities. Based on global circulation models, traditional forecasting methods are
computationally expensive and slow, limiting their ability to provide rapid forecasts. Recent advances
in deep learning offer faster and more accurate predictions, although these data-driven models are
often trained with global data from numerical simulations, which may not reflect reality. The emer-
gence of such models presents great potential for improving ocean prediction at a subregional domain.
However, their ability to predict fine-scale ocean processes, like mesoscale structures, remains largely
unknown. This work aims to adapt a graph neural network initially developed for global weather
forecasting to improve subregional ocean prediction, specifically focusing on the Canary Current
upwelling system. The model is trained with satellite data and compared to state-of-the-art physical
ocean models to assess its performance in capturing ocean dynamics. Our results show that the
deep learning model surpasses traditional methods in precision despite some challenges in upwelling
areas. It demonstrated superior performance in reducing RMSE errors compared to ConvLSTM
and the GLORYS reanalysis, particularly in regions with complex oceanic dynamics such as Cape
Ghir, Cape Bojador, and Cape Blanc. The model achieved improvements of up to 26.5% relative
to ConvLSTM and error reductions of up to 76% in 5-day forecasts compared to the GLORYS
reanalysis at these critical locations, highlighting its enhanced capability to capture spatial variability
and improve predictive accuracy in complex areas. These findings suggest the viability of adapting
meteorological data-driven models for improving subregional medium-term ocean forecasting. This
also demonstrates the superior flexibility of graph neural networks compared to traditional models, as
they can be adapted to new prediction tasks even when originally developed for different purposes.

Keywords Sea surface temperature forecasting; Graph neural networks; Canary Current Upwelling System;
Data-driven ocean prediction; Operational oceanography

1 Introduction

Oceanographic prediction is crucial for understanding climate change and supporting sectors like maritime transport,
fisheries, and natural disaster management (Bell et al., [2009)). It relies heavily on accurately forecasting mesoscale
processes due to their environmental and economic impacts. These processes give rise to distinct structures, influencing
mean currents and transporting key ocean properties (Falkowski et all [1991). Despite its importance, predicting
mesoscale processes remains challenging for operational forecasts (Treguier et al., [2017; [Mourre et al., 2018)), as
evidenced by the difficulty in forecasting the Gulf of Mexico Loop Current eddy during the 2010 Deepwater Horizon
oil spill (Adcroft et al.| [2010; |Liu et al., 2013)).
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Traditional oceanographic prediction techniques rely on numerical models that solve physics-based equations. While
these models have significantly advanced ocean forecasting, the theoretical foundation—quasi-geostrophic (QG)
theory—and the numerical models have inherent limitations that hinder their accuracy in certain contexts.

Although the QG theory initially advanced our understanding of mesoscale dynamics and ocean prediction, it struggles
to address strong currents, cannot account for bathymetric features, fails to incorporate surface density gradients, and
does not model frontal dynamics (Cushman-Roisin et al.,[1990). Despite these theoretical limitations, global ocean
circulation models remain the primary tools for oceanographic forecasting, although they contribute to the persistent
challenges of operational mesoscale prediction.

On the other hand, numerical ocean prediction (NOP) models—such as NEMO (Madec et al., [2024)), which forms
the core of reanalysis systems like GLORYS (Jean-Michel et al., |2021) and operational forecast systems like
PSY4V3R1 (Lellouche et all 2018)—remain the current standard for short-term deterministic forecasting. Nev-
ertheless, they cannot accurately represent reality due to diverse constraints such as incomplete understanding of
subgrid-scale parameterizations, poorly known forcing fields, insufficient knowledge of interactions with other Earth
system components, and restricted computational resources (Sommer et al., 2018)).

Additionally, incomplete observations with spatiotemporal gaps and the limitations of data assimilation schemes—still
in continuous improvement—prevent these models from fully capturing the ocean’s state. Furthermore, these models
do not fully utilize extensive historical data and lack optimization for modern hardware, such as GPUs, which further
reduces their efficiency. These limitations highlight the need for novel approaches to improve ocean prediction
capabilities.

In recent years, short-term machine learning weather prediction (MLWP) models have emerged in global atmo-
spheric forecasting, surpassing the efficiency and accuracy of traditional numerical systems (Bouallegue et al., [2024).
Models such as Pangu Weather (Bi et al.| 2023), GraphCast (Lam et al.,[2023)), Aurora (Bodnar et al., [2024), Neural-
GCM (Kochkov et al.,|2023)), Gencast (Price et al.,|2024), or AIFS (Lang et al., 2024) have demonstrated the power
of this approach, significantly reducing inference times and computational costs. By leveraging historical data and
focusing on spatiotemporal patterns, MLWP models bypass the constraints of incomplete physical understanding and
adapt easily to new prediction tasks without architectural modifications (Dueben and Bauer, 2018; |Scher}, 2018 |B1
et al., 2023)).

Nevertheless, MLWP models heavily depend on data quality and availability, facing challenges with heterogeneous,
sparse, spatially discontinuous, or noisy datasets, which can limit performance in certain contexts. Additionally, the
physical consistency of these models deteriorates over long timescales due to spectral bias, which can result in numerical
instabilities or unrealistic hallucinations (Chattopadhyay et al., [2023]).

While MLWP models perform well in atmospheric systems, their application to oceanography presents distinct
challenges. Unlike atmospheric data, which is abundant, spatially continuous, and less influenced by external factors,
oceanographic data is constrained by atmospheric interference, which affects observational accuracy and consistency,
spatial discontinuities, predominantly induced by the presence of continental landmasses, which significantly disrupt
data continuity and turn the training of these models complex.

Recent advancements in machine learning ocean prediction (MLOP) have led to the development of innovative models
at global and regional scales. Xihe (Wang et al., 2024), for instance, has been introduced for global ocean forecasting,
while SeaCast (Holmberg et al., [2024) and OceanNet (Chattopadhyay et al., |2024) focus on regional applications.
Similarly, progress in mesoscale ocean forecasting, including studies on eddy shedding predictability in the Gulf of
Mexico (Zeng et al.,|2015)) and data-driven turbulence forecasting using autoregressive techniques (Chattopadhyay
et al.| 2021)), has shown promising results.

The Canary current upwelling system (CCUS), the only eastern boundary upwelling system with islands, presents a
unique prediction challenge. In this region, intense mesoscale activity results from the interplay between oceanic features,
coastal regimes, and bathymetry, driving strong mesoscale stirring and creating a highly dynamic environment (Sangra
et al., [2009; |Aristegui et al.l [1994; Barton et al.l [1998). These dynamics create a complex environment for sub-regional
ocean prediction. State-of-the-art MLOP models have not been applied to medium-term forecasts in this region,
highlighting the need for novel approaches.

This work adapts the GraphCast model (Lam et al.,2023) for sub-regional ocean forecasting to evaluate its performance
under ocean-specific conditions. Using sea surface temperature (SST) as a case study, we introduce modifications to
handle challenges like spatial discontinuities and satellite-based data, including spatially masked loss functions. We
assess whether the model can capture mesoscale features such as upwelling, potentially addressing the limitations of
traditional ocean models in resolving frontal dynamics and subgrid-scale processes.
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In this context, SST is useful for studying the dynamics of mesoscale structures (Hausmann and Czaja, 2012), as eddies,
fronts, and filaments create distinct thermal signatures, i.e., warm/cold rotating cores. This study uses the Copernicus
Marine Service L4 SST reprocessed product (1982-2020), spanning 39 years, for a subdomain within the IBI region
(Iberia, Biscay, Ireland) to train and validate ocean models. The dataset provides daily, gap-free sea surface temperature
fields, derived from multiple intercalibrated satellite sources.

In the experimental results, we compare the ocean-adapted GraphCast-based graph neural network (GNN) and
ConvLSTM-based model (Shi et al., 2015) against NEMO-based reanalysis and forecast products (Jean-Michel et al.,
2021} |Lellouche et al. [2018)—specifically GLORYS and PSY4V3R1—in terms of predictive skill, computational
efficiency, and suitability for short- to medium-term SST forecasting. We focus on the complex CCUS region, which
features strong mesoscale turbulence, persistent upwelling fronts, and energetic eddies—challenges for traditional
quasi-geostrophic models. We evaluate how well ML-based models capture complex dynamics over different forecast
times and their sensitivity to mesoscale features in challenging areas like oceanic islands and coastal capes.

Additionally, the study assesses the ability of these models to capture seasonal and interannual variability in coastal
upwelling systems, where mesoscale processes often dominate. Model sensitivity to observational errors and initial
conditions is also analyzed, highlighting their influence on forecast degradation. Finally, the work explores operational
implications and proposes strategies to bridge the gap between data-driven approaches and traditional numerical
paradigms, emphasizing integration of physical constraints and improving resolution in coastal environments.

Our model’s superior performance in SST forecasting is evidenced by >76% and 48% reductions in RMSE over
GLORYS at 5- and 10-day lead times, respectively, and by a computational speed nearly ~100x faster (20-day forecasts
in 2.3 minutes vs. 7-day forecasts in 4 hours). However, its sensitivity to initial condition errors—reflected in an 8.3%
increase in days exceeding instrumental error thresholds (2017-2020)—and the presence of triangular artifacts that
raise RMSE variability by 15-20% at larger scales point to key architectural limitations. These findings underscore the
need for hybrid designs that combine GraphCast’s spatial precision with ConvLSTM-like stabilization to achieve a
better trade-off between accuracy and operational robustness.

Section [2] presents the study area of the CCUS and describes the L4 SST dataset used in our experiments. Section 3|
introduces the predictive approaches we evaluate in this work, including the GLORYS12V1 reanalysis, ConvLSTM
architecture, and our proposed graph neural network. The experimental results, presented in Section [] assess the
performance of the models, with particular emphasis on regions exhibiting intense mesoscale activity and the principal
capes. Section [5]analyzes the strengths and limitations of the methods, addresses systematic errors in coastal versus
open-ocean zones, and evaluates model robustness under dynamic oceanic conditions. Finally, Section [6] synthesizes
the key contributions of this work, outlines practical implications for operational oceanography, and proposes future
research directions.

2 Area of study and dataset

2.1 The Canary current upwelling region

The study focuses on a subdomain within the Canary Current Large Marine Ecosystem, specifically the Moroccan
subregion (Aristegui et al.,[2009), which extends from 21°S to 33°N between Cape Sim and Cape Blanc; see
This region includes two distinct meridional upwelling zones, as described by |Cropper et al.|(2014): i) the 21-26°N
zone, characterized by strong, permanent upwelling throughout the year; and ii) the 26-35°N zone, where upwelling
remains permanent but is weaker, intensifying during summer due to the seasonal migration of trade winds. The
contrast between these two upwelling zones, both in intensity and seasonal variability, highlights the complexity of the
Moroccan subregion and underscores its importance for accurately predicting sea surface temperature dynamics.

The region experiences upwelling-favorable winds year-round, with peak intensity during summer due to the northward
migration of the Azores High (Wooster et al., [1976). Additionally, the region exhibits pronounced mesoscale oceano-
graphic variability driven by geographic heterogeneity, including variations in continental shelf width, prominent capes,
and perturbations induced by the Canary Islands, which generate filaments and eddies.

The interplay of interconnected physical processes governs the coastal upwelling dynamics off northwest Africa,
particularly around Cape Ghir. Prominent capes, such as Ghir, Sim, and Cantin, serve as critical control points where
topography and bathymetry modulate atmospheric and oceanic flows. Wind forcing, the primary driver of upwelling,
intensifies Ekman transport between Cape Ghir and Cape Sim, injecting positive relative vorticity (Troupin et al.|, [2012)
and enhancing the upwelling of cold, nutrient-rich subsurface waters through shear-driven turbulent mixing (Estrada
Allis et al.,2023)). The Cape Ghir Plateau, a submarine projection of the High Atlas orogeny on land, deflects the coastal
jet offshore, inducing a potential vorticity imbalance that drives the formation of the characteristic filament (Hagen
et al.,|{1996).
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Figure 1: Summer (JJA) climatology of sea surface temperature (°C) in the Northwest Africa region, highlighting
the coastal upwelling system. The main panel displays the spatial distribution of temperature along the coast, with
three prominent upwelling centers: Cape Ghir (~30°N), Cape Bojador (~26°N), and Cape Blanc (~21°N). Dashed
gray contours represent isobaths, indicating bathymetric features relevant to upwelling dynamics. Insets on the right
provide zoomed views of each cape to better illustrate localized thermal gradients. The bottom-right globe indicates

the IBI (Iberian-Biscay-Ireland) domain of the Copernicus dataset, with a red bounding box marking the subdomain

corresponding to the study area shown in the main panel.

This filament displays a dual structure: a cold, surface-intensified core with temperature minima and chlorophyll
maxima, surrounded by a broader domain of less dense water influenced by anticyclonic interthermocline eddies

(ITEs) (Sangra et al.} 2015)). These recurrent ITEs, located north of the filament, strengthen offshore transport through
interactions with the upwelling front. Additionally, the irregular bathymetry causes bifurcations in the coastal jet and
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forms cyclonic eddies (Hagen et al.,[1996)), while the subduction of the filament into deeper layers highlights its role in
mass and energy export (Sangra et al., 2015).

Other capes, such as Jubi and Bojador, exhibit similar dynamics where the coastal wind angle and bathymetric
irregularities locally intensify upwelling. Atmospheric forcing, topographic constraints, and vorticity adjustments
collectively sustain the biological productivity and mesoscale variability unique to the CCUS (Pelegri et al., [2005)).

2.2 High-Resolution L4 sea surface temperature reprocessed

SST data is invaluable for validating models as it evaluates air-sea interactions and vertical mixing while providing
insights into the accuracy of model parameterizations and external forcing fields (Mourre et al.| [2018)). In this study, we
use the L4 SST reprocessed product (SST_ATL_SST_L4 REP_OBSERVATIONS_010_026) from the European Union
Copernicus Marine Service (CMEMS) for the Atlantic Ocean around Iberia, Biscay, Ireland (IBI), and the northwestern
European shelf domain (CMEMS]| 2024)). It covers nearly 40 years of daily SST data collected by satellites from
1982 to 2020. This high-resolution product, at 0,05 degrees resolution (=~ 5,55 km), covers the entire IBI domain
(=~ 17442 538 km?), ranging from 8,93° to 61,98° latitude and —20,97° to 12,98° longitude. It is provided in NetCDF-4
format and is represented in a standard coordinate system (WGS 84/World Mercator). This resource is produced by
Ifremer in France and is updated annually.

The L4 product is built from the L3S product SST_ATL_PHY_L3S_MY_010_038 using the inter-calibration method
described in |Piollé and Autret| (2023)). Satellite measurements of the SST come from various sources, such as NASA,
NOAA, EUMETSAT OSI-SAF, and ESA. These sources are combined using this inter-calibration to create a unified
dataset. Each data source includes information about the sensor-specific error statistics to help assess data quality. This
information and quality flags are used to identify and select the least reliable data.

For each day, a correction for SST values is estimated to account for discrepancies between the satellites to ensure a
consistent daily dataset. For each satellite, a large-scale bias field is determined by comparing the observations of the
satellite with the daily reference field. This bias is then smoothed using a Gaussian filter, which helps reduce noise and
other irregularities. The smoothed bias is subtracted from the original SST values, resulting in adjusted temperatures
that are more accurate and reliable. This adjustment is essential for correcting systemic errors and improving the overall
quality of the data.

Once the SST values are adjusted, the single-sensor composite files, L3C, are combined into a multi-sensor composite
file, L3S. This merging process ranks sensors based on their accuracy, determined through comparisons with direct
measurements. Each cell in the final grid contains data from the best sensor available, ensuring the highest quality SST
values.

Our study area is a subdomain within the IBI region, ranging from 19,55°N to 34,525°N and 20,97°W to 5,975°W,
covering an area of approximately 2 462 475 km?. This region is represented by a grid of 300 x 300 cells. The temporal
range of the data used spans from January 1, 1982, to December 31, 2020, corresponding to a total of 14 245 frames
(daily images) and a storage size of 10,25 GB. The final L4 product aims to depict a gap-free daily mean sub-skin SST
field in Kelvin at a depth of 20 cm. Therefore, there are no considerable differences between the surface and potential
temperatures at this depth.

We preprocessed the dataset by handling missing values for two purposes: first, we used them to calculate a static binary
land-water mask, which we smoothed using a Gaussian filter; second, we filled the missing values with the average SST
value. We used the average because the model requires complete input data without gaps, and the mean provides a
neutral value that avoids introducing strong gradients or artificial patterns.

3 Forecast methods

This section describes the forecasting approaches used to predict SST in the CCUS region, with all models validated
against satellite-derived L4 SST data (serving as ground truth). We compare our graph neural network against three
baselines: two numerical ocean models and one machine learning approach. First, PSY4V3R1, the operational
numerical forecast system that generates daily 10-day predictions using the NEMO platform, represents the state-of-
the-art deterministic ocean forecasting. Second, GLORYS, a high-resolution global ocean reanalysis based on the
same NEMO framework but enhanced through reanalyzed atmospheric forcing data. Regarding machine learning
baselines, we include a ConvLSTM neural network, which combines convolutional layers with long short-term memory
(LSTM) (Hochreiter and Schmidhuber, |1997) units to capture spatiotemporal patterns in SST evolution.

Then, we explain our graph neural network in detail, a model that leverages a multiscale graph representation to
improve predictions while reducing computational cost. We discuss the modifications to adapt the model for regional
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oceanography, including adjustments to the spatial structure and loss function optimization. The specific configurations
and hyperparameters for the graph neural network and ConvLSTM models are detailed in|Appendix Al

3.1 PSY4V3R1 forecast

Since October 2006, the Mercator Ocean PSY4V3R1 system has provided high-resolution global ocean monitoring and
forecasting under CMEMS. With a 1/12° (~ 9km) horizontal resolution and 50 vertical levels—offering fine-scale
detail in the upper ocean—it captures essential oceanic processes for operational use. Built on NEMO v3.1 (Madec
et al.| 2008)), it integrates high-frequency atmospheric forcing from the European Centre for Medium-Range Weather
Forecasts (ECMWF) (Lellouche et al., 2018)). Its data assimilation scheme, which combines a reduced-order Kalman
filter with 3D-VAR bias correction (Brasseur and Verron, [2006), ingests satellite altimetry, SST, sea ice concentration,
and in situ TS profiles (Lellouche et al.|[2013).

PSY4V3RI introduces several key upgrades over its predecessor, PSY4V2. It corrects atmospheric forcing with satellite
data, incorporates freshwater runoff from ice sheet melt, and applies a time-varying steric effect to improve sea level
representation. The system refines mean dynamic topography with GOCE geoid data (Rio et al., 2011), enhances coastal
accuracy with adaptive observational errors, and reduces deep ocean drifts by integrating WOA13v2 climatology.

It also strengthens data reliability through improved TS profile quality control, optimized SSH increments, and
assimilation of CMEMS OSI SAF sea ice concentrations (Lellouche et al.,[2013)). By aligning a 2.2 mm /yr global
mass trend with contemporary sea-level rise estimates and deriving background error covariance from bias-corrected
simulations, the system improves forecasting stability (Chambers et al.l 2017)).

The system generates 10-day ocean forecasts, including the runtime day itself, meaning it provides projections for nine
days into the future (Galloudec et al.l [2024). Updated daily at 00 UTC, it uses the PSY4V3R1 model to predict 3D
ocean variables (e.g., temperature, salinity, currents) and 2D variables (e.g., sea level, ice thickness, mixed layer). The
atmosphere—ocean coupled NEMO model requires at least 5.5 hours to complete a 6-day forecast when utilizing 864
processors (Thompson et al., 2021)). However, in practice, the data assimilation process used in PSY4V3R1 introduces
additional computational overhead, so the total runtime for a full cycle may extend to several more hours, even when
using a few hundred cores.

3.2 GLORYS12V1 Reanalysis

Jean-Michel et al.|(2021)) describes GLORYS12 as a high-resolution global ocean reanalysis system based on the
ocean and sea ice NEMO models (Madec et al},2024), starting its simulation in 1991. The system operates NEMO
on a quasi-isotropic grid with a 1/12° horizontal resolution and 50 vertical levels. The ocean model is coupled with
and forced by the ERA-Interim (Dee et al.,[2011)) atmospheric reanalysis for surface conditions. It also benefits from
reanalyzed atmospheric forcing rather than analyses and forecasts, incorporates higher-quality reprocessed observations,
and includes refined data assimilation procedures.

GLORYS12 applies the singular evolutive extended Kalman (SEEK) (Brasseur and Verron, [2006) filter method for data
assimilation, integrating various sources of information (i.e., satellite sea level anomalies (SLA) (Pujol et al.,2016)),
satellite SST (Ezraty et al.,[2007)), and in situ temperature and salinity (T/S) vertical profiles (Cabanes et al., 2013}
Szekely et al.| 2019)). A 3D-VAR bias correction scheme also estimates large-scale temperature and salinity biases,
improving subsurface ocean variability representation.

GLORYS12 utilizes 1296 processors and completes a 7-day simulation in approximately four hours of computational
time. However, the total runtime extends to 14 days because the model employs the incremental analysis update (IAU)
method (Lellouche et al., [2013)) to assimilate corrections.

3.3 ConvLSTM

The Convolutional LSTM (ConvLSTM) cell with peephole connections, introduced by [Shi et al.| (2015), is a specialized
recurrent neural network (RNN) that combines the capabilities of CNNs to extract spatial correlations with the gating
mechanisms of peephole LSTMs to capture temporal dependencies. ConvLSTM is widely used in spatiotemporal
prediction tasks, including ENSO forecasting (Mu et al.,[2019, 2021)), nearshore water level prediction (Yang et al.,
2024), and tropical cyclone precipitation nowcasting (Yang et al.| [2022).

Researchers initially used RNNs for time-series problems but faced challenges with vanishing and exploding gradients
in long sequences (Bengio et al., [1994). LSTM networks introduced gating mechanisms to address these issues,
enhancing the handling of extended sequential tasks (Hochreiter and Schmidhuber, 1997} |Gers et al.,|1999; |Gers and
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Schmidhuber, 2000). ConvLSTMs further advanced this by incorporating convolutions into their gates, enabling the
simultaneous capture of temporal and spatial features.

However, modern LSTM architectures often omit peephole connections, reducing the parameter number without signifi-
cantly impacting performance (Greff et al.,[2017). This adjustment aligns contemporary ConvLSTM implementations
more closely with the standard LSTM cells. ConvLSTM replaces traditional matrix multiplications with convolutional
operations in input-to-state and state-to-state transitions. This design enables the model to effectively capture spatial
features by analyzing local neighboring inputs and states.

The input and forget gates regulate data flow by controlling how new data integrates with previous states to generate an
updated cell state, while the output gate determines the current output. Let x? be the SST map for a given time instant ¢,
the ConvLSTM equations are given by:

i' = o(Wy +x' + Wy, xh'™! + b)),

f' = o(Wip*x' + Wy xh'™ 4 by),
gt = tanh(W,, * xt 4+ Wy * hi=! 4+ by),
o' = (Wi, xx' + Wy, xh'™! 4 b)),

Ct — ft @Ct—l _|_it @gt,

h' = o' ® tanh(c'),

where it represents the input gate, which determines how much new information from the input sequence x! and the
previous hidden state h'~1 is allowed into the memory cell. The cell state c’ acts as a memory that retains relevant
information over time and is updated based on the input gate and the forget gate f*, which controls the amount of
information from the previous cell state c*~! to retain or discard. The output gate, o?, determines how much information
from the updated cell state c! is passed to the hidden state h?, which serves as the final output of the cell at the current
time step. The activation functions are the sigmoid, o(+), and the hyperbolic tangent, tanh(-).

Parameters W;, Wp;, Wir, Wy, Wi, Wy, Wy, and Wy, represent the weight matrices associated with the
input, xt, and the hidden state, h*~!, for each gate, while b;, by, b, and b, are the biases for the respective gates. The
Hadamard product (®) performs element-wise multiplication, enabling selective gating at each step. While classical
LSTMs rely on matrix multiplications, ConvLSTMs replace these operations with convolutions (x) within each gate.

3.4 Graph neural network

Our method is based on a GNN model for global medium-range weather forecasting, originally trained on weather
reanalysis data, predicting various weather variables globally at a high resolution in under a minute. It is an adaptation
of the GraphCast (Lam et al.| |2023)) model for oceanographic forecasting. This autoregressive model predicts a new
state based on two previous time steps. The processing occurs in an underlying multiscale mesh refined from an
icosahedron in multiple resolutions. The neural network structure comprises an encoder, which embeds the input-grid
variables into the mesh nodes, a processor that propagates messages through the multiscale mesh, and a decoder that
maps the forecasting back onto the grid.

The model was originally designed for global atmospheric forecasting and employs two variable types: input and
input/target. The model can predict eleven variables: five surface and six atmospheric variables, using data from the
ERAS dataset. These predictions rely on two static input variables, geopotential at the surface and land-sea mask, and
five input forcing terms, including solar radiation at the top of the atmosphere and four time-related features.

We adapted this model to predict SST in a local region. This adaptation involved simplifying the model, reducing both
the input and input/target variables, and relying on the four time-based features and a single static variable, the land-sea
mask. Additionally, to optimize the model for regional use, we replaced the icosahedral mesh with a square curvilinear
mesh that represents a curved section of a spherical surface. These modifications highlight the model’s versatility and
adaptability for different scales and tasks.

The model uses graphs to simulate the relationship between SST values, represented as discrete cells in a grid. It relies
on a bipartite graph G = {V8, V™ g8 £82m cm2e} made up of two sets of nodes or subgraphs: V2, arranged in a grid
pattern, and V™, structured in a planar and regular mesh. Only the nodes in v]* € V™ have bidirectional connections via
edges SSY",. € ™. Additionally, these two sets of nodes are connected by edges, S Sgﬁ,m € e8?™ and S SQ}TQQ € em?s,

modeling a directional relationship between the grid and the mesh nodes, and vice versa.

This bipartite graph defines local relationships (82™, e™28) between grid node groups v{ € V9, linked through mesh
nodes v;". Additionally, distant multi-scale relationships between these neighborhoods are captured by ™ connections.
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The number of scales, r, is modeled using a multi-mesh configuration M" : V9, defined by embedded mesh refinements
{MO MY M? ... M"}. shows an M? mesh with red nodes at the coarsest scale with long-range connections,
blue nodes at the second scale, and green nodes at the finest scale with short-distant edges.
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Figure 2: Representation of a multi-mesh with a refinement factor of » = 2, consisting of a total of 81 nodes. The
nodes are grouped into three resolution levels: 9 nodes belong to M (the coarsest scale, in red), 16 nodes to M (the
intermediate level, in blue), and 56 nodes to M? (the finest level, in green). We replaced the traditional icosahedral mesh
with a curvilinear mesh based on latitude and longitude coordinates. In this approach, each node’s position is explicitly
described by its latitudinal and longitudinal values, ensuring a more accurate representation of the Earth’s spherical
geometry. New nodes are generated by refining the angular midpoint between existing nodes in spherical coordinates,
avoiding distortions from planar approximations and improving spatial accuracy for regional-scale modeling.

The model uses a learnable algorithm called Interaction Network (IN) (Battaglia et al., 2016; [Watters et al.| 2017)
to define how nodes in the graph interact with others. This IN is designed to understand relationships in complex

systems (Battaglia et al, 2018}, [Pfaff et al., 2020; [Keisler, 2022)). At its core, the IN relies on multilayer perceptrons
(MLPs), which in the standard GraphCast implementation typically employ a latent size of 512. However, we use
smaller latent sizes since our model forecasts a single oceanographic variable. This reduction in latent dimensionality
offers a significant advantage, resulting in a more parsimonious model with fewer parameters. Consequently, the model
becomes computationally less demanding, leading to accelerated training and inference.

The IN mechanism facilitates sending messages from one sender node s to another receiver node r, allowing information
to flow and update the features of both the nodes and the edges across G. The encoder, processor, and decoder work
through specific message-passing steps within different parts of G. In the encoder, nodes in V% send messages to nodes
in V™, s9 — r™. The decoder then reverses this process, with nodes in V™ sending messages back to nodes in V&,
r9 < s™. The processor handles messages between nodes in V™, s — r™, performing this step one or more times.
Each additional message-passing step increases the number of model parameters, as each step requires an independent
IN.
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More details about the architecture of the model are given in with the structure of the bipartite graph and
the equations of the encoder, processor, and decoder.

4 Results

4.1 Metric-Based Evaluation and Quantitative Analysis of Forecast Skill

The performance of the models was verified against the SST L4 satellite data and assessed through a comprehensive
forecast verification framework, detailed in based on four metrics: Root Mean Square Error (RMSE),
Anomaly Correlation Coefficient (ACC), Bias, and Relative Activity (RA). These metrics were calculated following the

methodology described in[Bouallegue et al.|(2024).

Each score was computed independently for each lead time, up to 20 days, using daily temperature fields. The evaluation
was performed on a gridded domain of 300 x 300 points in latitude and longitude, covering the Morocco subregion.
For each grid point, the scores were averaged over 365 x 4 x 20 individual forecast realizations, corresponding to daily
forecasts generated from 2017 to 2020, the time range of the test set, as shown in [Figure 3| This methodology yields
robust statistical estimates of model performance for each lead time.
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Figure 3: Performance evaluation of the models for SST, verified against satellite L4 observations. The plots display four
key metrics over a 20-day forecast period: RMSE, Bias, Relative ACT, and ACC. The models compared are GraphCast
(orange), ConvLSTM (green), and PSY4V3R1 (blue), while the red dashed line in the RMSE panel represents the
instrumental error of the satellite data (40,25°C").

The SST satellite product used for verification contains an instrumental error for each grid cell within the domain
and for each day of the test dataset. The average of this instrumental error is +0,25°C across the entire dataset. This
value serves as a reference threshold in the RMSE evaluation, establishing a lower bound for the expected accuracy
of the predictive models. In this context, our model surpasses the instrumental error threshold on the eighth day and
ConvLSTM on the fifth day, indicating differences in their ability to match the observational accuracy of the satellite
product.
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A quantitative comparison of the forecast Skill Score (Sscore) between the two deep learning models was performed
using the normalized difference of their scores. This methodology follows the approach described by |Geer| (2016). The
relative RMSE (Eq. and Activity (Eq[T8)) percentage errors were calculated as:

(RMSEp — RMSE,)
RMSE

where A represents the GraphCast model, and B may represents the reference GLORYS or ConvLSTM models. For the
ACC (Eq. and bias (Eq. metrics, which can take negative values, the normalized difference was calculated as:

ACC,4 — ACCp)
(1—ACCp)

x 100 (D

S’r‘mse =

Sacc = (

x 100 @)

The spatial averages were computed on the 300 x 300 grid cells in every forecast, and the temporal averages were
subsequently calculated for each day. This resulted in 20 values representing the normalized difference for each lead
time. Each value represents the average of 300 x 300 x 365 x 4 data points.

The Symse and S, quantify the relative performance of GraphCast compared to ConvLSTM. Those percentages
indicate that our model achieves a higher or lower score than ConvLSTM at a given lead time.

Looking at[Figure 3] we observe that, for the initial five lead times, GraphCast demonstrates a 81,7% to 38,4% higher
Sace relative to ConvLSTM, while for the subsequent ten lead times (6 to 10), the S, is 30,9% to 7,8% higher. In
terms of S;.se, GraphCast exhibits an error reduction between 74,6% and 30,0% in the first ten lead times, and an
improvement of 28,4% to 21,7% in the last ten lead times. These results highlight the enhanced predictive skill of the
graph model across short and extended forecast horizons.

In terms of RA, GraphCast shows overactivity with a monotonically increasing level relative to observations, while
ConvLSTM shows underactivity, with a consistently lower and decreasing level across lead times. Despite these
differences, both models maintain a low mean bias across all forecast lead times. ConvLSTM’s bias remains virtually
zero (< 0,009 °C), whereas GraphCast’s bias increase gradually up to 0,05°C at the last lead time. In both cases, the
bias stays well within the instrumental uncertainty. Note that these biases are averages over the spatial domain and all
initialization dates yielding a naively results.

4.2 Interannual model performance

We can analyze the precision of the methods using barrier plots, where the y-axis represents the lead time, the x-axis
represents the forecast day, and the color scale indicates the RMSE value. These plots depict 365 x 4 x 20 predictions,
where each point represents the latitude-weighted spatial average of the 300 x 300 grid cells for each day.
compares the barrier plots of the models from 2017 to 2020.

We can use these barrier plots to assess the percentage of forecast days in which model errors exceeded the mean
satellite instrumental error across different lead times and forecast realizations from January 3, 2017, to December 26,
2020. We quantified the proportion of forecast lead time days where RMSE values surpassed the instrumental error
threshold (cf. [Table T). Higher percentages indicate periods of reduced model skill, and lower values indicate improved
performance.

A notable anomaly occurred on January 1, 2020, during which both models demonstrated unusually low skills. This
anomaly coincided with a significant shift in satellite instrumental error, suggesting a potential link between the two
events, as illustrated in The magnitude of this instrumental error shift was quantified to range between 3,20
to 5,20 and was compared against the time series of instrumental error variability. This comparison supports the
hypothesis that observational uncertainties contributed to the degraded model performance on that day.

Table 1: Percentage of forecasts exceeding the instrumental error threshold for GraphCast and ConvLSTM (2017-2020).
The comparison is based on 28 719 RMSE values, above the instrumental error as the baseline.
Year N GraphCast % ConvLSTM %

2017 7070 51,0 72,0
2018 7300 52,0 71,0
2019 7300 57,0 73,1
2020 7049 59,3 75,2

Both models recorded the highest percentage in 2020, with 59,3% of RMSE values above the threshold for GraphCast
and 75,2% for ConvLSTM. This achieved its lowest value in 2018, at 71%, while GraphCast recorded its lowest in
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Figure 4: Predictability barrier plots of daily RMSE for SST forecasts at lead times of 1-20 days from 2017 to 2020,
comparing GraphCast (top panel) and ConvLSTM (middle panel). Color shading—from pale (low RMSE) to dark
(high RMSE)—represents the evolution of forecast error as a function of lead time and forecast initialization date. The
solid red line indicates the mean instrumental-error threshold, while dashed grey lines mark 5- and 10-day lead-time
references. All RMSE values are validated against L4 satellite SST data. The bottom panel displays time series of daily
instrumental-error anomalies (AErr/At, °C day~!), with red (blue) bars indicating increasing (decreasing) errors.
Notably, on 1 January 2020, both models exhibit a simultaneous RMSE spike exceeding the mean instrumental-error
threshold, coinciding with a sharp positive anomaly in instrumental error—indicating a transient but substantial loss of
predictability.

2017 at 51%. This highlights a period of relatively better performance for GraphCast, particularly in 2017, where it was
significantly better than ConvLSTM. The results underscored GraphCast’s improved consistency and accuracy over
ConvLSTM across the evaluated years.
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GraphCast produced a four-year RMSE average of 0,42°C with a standard deviation of 0,13°C'. The model showed a
slight reduction in 2018 (0,40°C) and the highest increment in 2020 (0,43°C). In contrast, ConvLSTM yielded higher
RMSE values, with a four-year average of 0,53°C and a standard deviation of 0,2°C'. The model exhibited its lowest
RMSE in 2019 (0,52°C) and the highest value in 2018 (0,54°C).

Additionally, we calculated the skill RMSE of GraphCast compared to ConvLSTM, following the same methodology
described in the previous section. The S.,s. shows that GraphCast consistently outperformed ConvLSTM in the
test period, with improvements ranging from approximately 19,4% to 26,5%, with the largest improvement in 2018.
GraphCast obtained lower RMSE and more values under the instrumental error threshold, consistently indicating
superior predictive performance compared to ConvLSTM in all years.

We compare the RMSE time series of GraphCast for 5-day and 10-day forecast lead times with the RMSE of the
GLORYS reanalysis data in the test period, as illustrated in[Figure 5] The results demonstrate significant improvements
in forecast skill: for the 5-day lead time, GraphCast achieves a 75,5% reduction in RMSE compared to the reanalysis;
similarly, for the 10-day lead time, GraphCast shows a 47% lower RMSE than the reanalysis. These findings highlight
GraphCast’s superior performance in reducing prediction errors across the test period. Additionally, GraphCast generates
a 20-day SST forecast in approximately 140 seconds on a Quadro RTX 4000 GPU with 8 GB RAM, showcasing
its remarkable computational efficiency. In contrast, GLORYS, which simulates a comprehensive suite of ocean
variables—including salinity, velocity components, and others—takes approximately 4 hours to complete a 7-day
simulation.
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Figure 5: Time series of RMSE for SST predictions over the test period. RMSE values from GraphCast forecasts at
5-day (green) and 10-day (red) lead times are shown alongside those from the GLORYS reanalysis (blue). GraphCast
consistently exhibits lower RMSE throughout the period, indicating reduced prediction error relative to the reanalysis.

4.3 Seasonal analysis

To further investigate the seasonal patterns in the model, we used RMSE barrier plots based on a three-month moving
window average centered on each day of the year. We apply a 90-day smoothing window to the daily spatially latitude-
weighted RMSE values from the barrier plots of each model, spanning the four years of the test set. The window
included 45 days before and after the target day, accumulating 90 days, repeated across the four years. Each value
represents an average of 300 x 300 x 90 x 4 RMSE values, resulting in 365 x 20 data points per day of the year and

per lead time. shows the seasonal barrier plots.

The seasonal performance of the models was evaluated by calculating the percentage of days within each season where
the RMSE exceeded the mean instrumental error. ConvLSTM recorded the highest rate in DJF and JJA, with 19,1% and
20,2% of RMSE values above the threshold, respectively. GraphCast, on the other hand, showed its peak percentage in
JJA and SON, with 15,4% and 15,6% of values above the threshold, respectively. GraphCast demonstrated its lowest
rate in DJF, at 12%, while ConvLSTM achieved its best performance in MAM, with 17% of values above the threshold.
These results highlight seasonal variations in model performance, with GraphCast showing relatively better consistency
across seasons than ConvLSTM.

Additionally, the mean RMSE for each season was computed to assess the seasonal performance of the models (cf.
[Table 2)). GraphCast exhibited the highest RMSE of 0,44°C' with a standard deviation of 0,1°C' during SON, while
its lowest RMSE of 0,35°C with a standard deviation of 0,07°C occurred in DJF. In contrast, ConvLSTM produced
its highest RMSE of 0,6°C with a standard deviation of 0,2°C' in JJA, and its lowest RMSE of 0,4°C with a standard
deviation of 0,1°C in MAM. These findings align with the previous analysis, reinforcing that GraphCast consistently
outperforms ConvLSTM across seasons, particularly in winter (DJF), where it achieves the lowest rate.
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Figure 6: Seasonal predictability barrier plots showing daily RMSE for SST forecasts at lead times of 1-20 days,
averaged using a 90-day moving window (£45 days) to highlight seasonal patterns in forecast skill. The top panel
corresponds to GraphCast and the middle panel to ConvLSTM. Color shading—from pale (low RMSE) to dark (high
RMSE)—indicates forecast accuracy as a function of lead time and day of year. The solid red line marks the mean
instrumental-error threshold, and dashed grey lines indicate 5- and 10-day lead-time references. All RMSE values
are validated against Level-4 satellite SST data. The x-axis spans the full calendar year (days 1-365), with each point
representing the center of a 90-day moving window, averaged across four years (2017-2020) to capture the seasonal
cycle of forecast skill. The bottom panel presents the seasonal cycle of RMSE at selected lead times (5 and 10 days) for
GraphCast, along with the corresponding RMSE from the reanalysis (blue), providing a reference for error magnitude
across the year. These time series correspond to horizontal slices through the top panel and emphasize periods of
relatively higher or lower model skill.
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Table 2: Seasonal RMSE for GraphCast and ConvLSTM models. The table presents the mean (1) and standard deviation
(o) of RMSE values for each season: December-January-February (DJF), March-April-May (MAM), June-July-August
(JJA), and September-October-November (SON). GraphCast and ConvLSTM performance is compared across seasons,
highlighting variations in prediction accuracy and consistency.

Season GraphCast ConvLSTM
p(CC) o (CC) pCC) o(°C)
DIJF 0,35 0,07 0,58 0,20
MAM 0,38 0,08 0,40 0,10
JJA 0,43 0,11 0,60 0,20

SON 0,44 0,10 0,50 0,15

Next, we calculate the relative improvement of GraphCast to ConvLSTM by estimating the .S, s. for each season
and lead time. The results demonstrate that GraphCast consistently outperformed ConvLSTM across all seasons. The
most significant improvement was observed in DJF, with a 38,5% reduction in RMSE, while the smallest improvement
occurred in MAM, with a rate of 7%. GraphCast also achieved lower RMSE values in the remaining seasons, with
28,4% in JJA and 10,6% in SON compared to ConvLSTM. These findings align with seasonal performance trends
identified earlier, further emphasizing GraphCast’s superior accuracy and consistency across all seasons, particularly in
winter and summer.

Additionally, the same moving window averaging procedure was applied to the RMSE of the GLORYS reanalysis
dataset, verified against satellite SST, to establish a reference climatology for the reanalysis. The seasonal RMSE
time series for GraphCast at 5-day and 10-day lead times was then compared to the GLORYS reference, providing a
comparative view of how well these forecast lead times reproduced the seasonal cycle, as shown in [Figure 6. The
normalized difference between GraphCast and GLORYS was calculated to quantify the relative skill of GraphCast in
capturing the seasonal cycle compared to the reanalysis data.

We computed the .S,.,,, s of GraphCast relative to the GLORYS reanalysis for each forecast lead time to evaluate model
performance further. The results demonstrate significant improvements in forecast accuracy: for the 5-day lead time,
GraphCast achieved the highest reduction in RMSE during DJF and SON, with a rate of 77,4% for both seasons, while a
rate of 73,0% and 75,3% were observed for MAM and JJA, respectively. Similarly, for the 10-day lead time, GraphCast
showed the highest skill in DJF and SON, at 51,2% and 50,7%, respectively, with 42,4% and 46,0% for MAM and
JJA. This comparison highlights the seasonal variability in model performance and emphasizes the extent to which
GraphCast outperforms GLORYS across different seasons and forecast horizons.

4.4 Analysis of the spatial accuracy of models forecasts

In this section, we analyze the accuracy of models in the area of study. We generated RMSE maps for each lead time,
where each grid cell represents the temporal average of 365 x 4 RMSE values, corresponding to the four years of
the test set. This averaging procedure results in 20 RMSE maps. shows the corresponding error maps for
GraphCast and the maps for the ConvLSTM model.

The first step of the analysis quantifies the percentage of ocean grid cells, out of a total of 49 061, where the RMSE
exceeded the mean instrumental error for each lead time and model. This metric provides insight into the spatial extent
of regions with significant prediction errors. From the first lead time, ConvLSTM showed 0,9% of cells above the
instrumental error threshold, while GraphCast had no cells exceeding this error. By the fourth lead time, GraphCast
surpassed the instrumental error in 1,05% of cells, whereas ConvLSTM had a rate of 12,54% of cells above the threshold.
Notably, ConvLSTM reached 100% of ocean cells exceeding the instrumental error by the eighth lead time, while
GraphCast remained significantly lower at 22,96% for the same lead time. By the twentieth lead time, GraphCast
produced 99,01% of ocean cells exceeding the instrumental error. Therefore, GraphCast maintains lower prediction
errors across a larger spatial extent and longer lead times than ConvLSTM.

The spatial RMSE average reveals that GraphCast consistently exhibits lower values than ConvLSTM across all lead
times. At the first lead time, GraphCast achieves 1 = 0,02°C' and ¢ = 0,008°C, while ConvLSTM shows p = 0,05°C'
and o = 0,054°C'). However, the standard deviation of GraphCast grows more rapidly than that of ConvLSTM, reaching
w=0,21°C and o = 0,094°C by the eighth lead time, compared to ConvLSTM’s y = 0,36°C and o = 0,088°C).
Beyond the eighth lead time, GraphCast’s standard deviation remains higher than ConvLSTM, while its mean is lower.
At the last lead time, GraphCast achieves a smaller mean (¢ = 0,5°C') than ConvLSTM (i = 0,76°C), but its standard
deviation (o = 0,218°C) is larger (0 = 0,13°C'). Therefore, GraphCast maintains lower prediction errors despite its
higher variability in later lead times.
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Figure 7: Point-wise RMSE average for 20 lead times forecasts of the GraphCast model. Each map represents the
average RMSE at each point of our area of study for 365 days and 4 years of the test set. The images show the results of
the 1 to 20 lead times from left to right and top to bottom.

We also computed the spatial average S, se relative to ConvLSTM. The mean reduction in RMSE across all lead times
is 43,86%, with the highest reduction of 62,48% at the first lead time and the lowest reduction of 35,73% at the last lead
time. This indicates that GraphCast provides consistently small errors over ConvLSTM across all forecast horizons.

The spatial analysis also allows us to identify regions with high RMSE values. Visual inspection of the maps revealed
that the areas with the highest values for both models were concentrated near prominent capes, which collectively
accounted for more than 18,6% of the total RMSE across all lead times relative to the entire domain. Specifically,
Cape Ghir contributed with a rate of 6,8%, Cape Bojador with 4,0%, and Cape Blanco with 7,8% to the overall RMSE.
Despite these challenges, GraphCast demonstrated superior performance in these regions compared to ConvLSTM. On
average, GraphCast achieved significant reductions in RMSE relative to ConvLSTM, with improvements of 22,2% at
Cape Ghir, 24,9% at Cape Bojador, and 28,5% at Cape Blanco. Therefore, GraphCast can handle complex regional
dynamics better than ConVLSTM, particularly in areas with high prediction errors.

Finally, we computed the spatial S,.,,s. relative to the time-average GLORYS reanalysis, with an full domain average
RMSE of 0,48°C. This metric quantifies the domain-averaged skill in RMSE between GraphCast and the reanalysis.
For the 5-day lead time, the GraphCast average RMSE is smaller by a rate of 74,2% relative to the reanalysis across
the entire domain. At the 10-day lead time, the error is reduced by a 44,1%, reflecting diminished but still significant
improvements. These results demonstrate GraphCast’s ability to outperform the reanalysis benchmark, with higher
performance at shorter lead times. The same analysis was applied to each coastal cape and, for the 5-day lead time,
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Figure 8: Point-wise RMSE average for 20 lead times forecasts of the ConvLSTM model. Each map represents the
average RMSE at each point of our area of study for 365 days and 4 years of the test set. The images show the results of
the 1 to 20 lead times from left to right and top to bottom.

GraphCast improved the average RMSE by a 69,7% at Cape Ghir, 78,6% at Cape Bojador, and 78,5% at Cape Blanc
relative to the reanalysis. At the 10-day lead time, the reductions were 36,8%, 53,5%, and 51,1%, respectively. This
shows that GraphCast provides consistently better estimates than the reanalysis data.

5 Discussion

The results presented in the previous section highlight key differences in performance between the two MLOP
models—GraphCast and ConvLSTM—and the GLORYS reanalysis, along with the instrumental error baseline.
GraphCast shows consistently lower RMSE and higher ACC values in all lead times, indicating superior predictive
capability in the medium-range forecasts.

Between 2017 and 2020, both deep learning models showed an increasing number of days when RMSE surpassed
the instrumental error threshold, though with different patterns. GraphCast outperformed ConvLSTM overall but had
a sharper rise in exceedances (from 51.0% to 59.3%; +A8.3%) compared to ConvLSTM’s slower increase (from
72.0% to 75.2%; +A3.2%). This suggests a notable limitation of GraphCast, especially in 2019 (+Ab5.0% interannual
change): although it captures fine-scale features well, it is more sensitive to initial errors. Small inaccuracies, such as
those from upwelling zones, can grow unpredictably over time, especially under strong mesoscale activity. This pattern

16



Deep Learning Weather Models for Subregional Ocean Forecasting

corresponds with observed upwelling trends in the California Current Upwelling System (CCUS) (Cropper et al.,[2014),
where summer upwelling has intensified in the permanent (21-26°N) and weak permanent (26-35°N) zones.

In terms of forecast quality, ConvLSTM reduces sensitivity to upwelling-driven variability by generating smoother
outputs through anomaly averaging. This behavior is evident in the RA score: ConvLSTM tends to be underactive,
while GraphCast produces noisier, overactive forecasts. However, this smoothing limits ConvLSTM’s ability to resolve
fine-scale dynamics, making it less suitable for high-resolution applications. By contrast, the GNN captures spatial
dependencies more effectively, achieving lower RMSE and higher ACC across most lead times. Yet, GraphCast’s higher
standard deviation at later lead-times reveals sensitivity to local ocean variability, while ConvLSTM’s convolutional
structure inherently suppresses small-scale fluctuations. This trade-off prioritizes stability over accuracy—ConvLSTM’s
visually coherent forecasts lack the granularity to capture localized dynamics, whereas GraphCast’s graph-based
connectivity preserves fine-scale patterns.

Integrating GraphCast fine-scale representation with ConvLSTM stabilizing smoothing could mitigate error propaga-
tion while retaining critical dynamic structures. Their divergent performances stem from fundamental architectural
differences: GraphCast graph-based approach resolves ocean patterns more precisely, while ConvLSTM convolutions
blur spatially nuanced features.

GraphCast demonstrates the transformative potential of MLOP, achieving 75,5% and 47% RMSE reductions compared
to GLORYS at 5-day and 10-day lead times while generating 20-day SST forecasts in just 2,3 minutes. In contrast,
GLORYS provides a comprehensive multi-variable ocean state representation, including salinity and velocity com-
ponents, but requires 4 hours for a 7-day simulation. Despite its broad scope, GLORYS incorporates uncertainties
stemming from data assimilation methods, parameterizations, and model biases. GraphCast’s exceptional speed makes
it a powerful tool for real-time forecasting. Expanding its capabilities to include variables like salinity and currents is
crucial for broader oceanographic applications.

On January 1, 2020, both MLOP models experienced a sharp drop in forecast skill, coinciding with a significant increase
in satellite instrumental error. This highlights the strong dependence of data-driven ocean forecasts on the quality of
initial conditions. As noted by [Bouallegue et al.|(2024)), initializing with higher-quality data, such as operational IFS
analyses instead of ERAS, can significantly improve forecast accuracy. The substantial observational errors introduced
at initialization likely degraded forecast performance, depending on each model’s sensitivity to error growth, where
the ocean’s chaotic nature amplifies small discrepancies. This event underscores the vulnerability of machine learning
models to sporadic observational anomalies and reinforces the need for robust quality-control procedures, improved
error modeling, and advanced data assimilation strategies.

The seasonal analysis using a three-month moving window average shows that GraphCast consistently outperforms
both ConvLSTM and the GLORYS reanalysis, although performance varies by season. The deep learning models
exhibit their weakest performance during summer (JJA),when upwelling intensifies due to the seasonal shift of the
Azores High and the Inter-Tropical Convergence Zone (ITCZ) (Wooster et al.l 1976} |Cropper et al, 2014). Despite
these challenging conditions, GraphCast reduces RMSE by 28.4% compared to ConvLSTM and by 75.3% relative to
GLORYS, suggesting that its graph-based architecture more effectively captures oceanographic processes linked to
intensified upwelling.

In contrast, ConvLSTM performs notably worse in JJA due to its convolutional architecture, which smooths the forecasts
and filters out high-frequency variability. While this reduces noise, it also suppresses the sharp gradients and nonlinear
interactions characteristic of active upwelling regimes, limiting its ability to resolve fine-scale summer dynamics. In
winter (DJF), when upwelling is weaker and ocean conditions are more stable, this smoothing becomes less detrimental,
and GraphCast’s advantage becomes even more pronounced, excelling at capturing steady-state patterns. During spring
(MAM) and autumn (SON), both models face similar challenges, and their performance converges.

The spatial distribution of errors reveals high RMSE values near Cape Ghir, Bojador, and Blanco—areas characterized
by intense upwelling, complex bathymetry, and coastal current interactions. These conditions pose significant challenges
for both numerical and deep learning models, which still struggle to fully resolve filament generation processes driven
by wind forcing, coastline irregularities, and mesoscale instabilities. The absence of explicit atmospheric forcings
(e.g., wind stress) and bathymetric inputs in the deep learning framework likely limits its ability to disentangle these
mechanisms. Additionally, the resolution of satellite-derived L4 data used for training cannot capture submesoscale
features (< 10km), potentially introducing systematic biases. This aligns with findings from recent studies showing
that global climate models underestimate upwelling intensity due to coarse spatial resolution (Bindoff et al.,[2019;
Docquier et al.| 2019)), highlighting the need for regional downscaling and high-resolution ocean-atmosphere coupled
models (Roberts et al., [2018)).

A drawback of GraphCast is the emergence of triangular artifacts at longer lead times, visible as mesh-like patterns
superimposed on SST predictions. Visual analysis links these artifacts to the decoder’s mesh structure, where each
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triangular element updates SST values within its influence area. Since neighboring triangles share only one edge and
two nodes, inconsistencies arise—especially in dynamic regions like coastal upwelling zones—where adjacent elements
may experience different physical processes. This highlights the difficulty of ensuring coherence across mesh elements
under heterogeneous ocean conditions.

Mitigating these artifacts presents both computational and architectural challenges. Refining the mesh can improve
spatial consistency by reducing each triangle’s influence area, as seen in higher-resolution graph-based models (Lam
et al.,2023;|Oskarsson et al.,|2023; | Holmberg et al.,|2024), but at significant computational cost. Alternatively, increasing
node connectivity in the decoder, drawing information from more than three nodes using attention mechanisms, could
smooth transitions across triangles mitigating artifacts by distributing updates across a broader mesh neighborhood. A
third strategy involves integrating convolutional layers into the decoder to blend localized element outputs, leveraging
their proven spatial smoothing effect. This approach, supported by ConvLSTM’s artifact-free outputs and lower
variability, has been effective in reducing grid artifacts in transformer-based models (Couairon et al.,[2024). Future work
should explore hybrid architectures that combine adaptive mesh connectivity with convolutional smoothing, preserving
GraphCast’s ability to resolve large-scale dynamics while enhancing robustness to localized errors.

GraphCast outperforms ConvLSTM and GLORYS in coastal upwelling zones, reducing errors by up to 28.5% in
upwelling regions, highlighting its superior ability to capture atmosphere—ocean interactions and fine-scale spatial
gradients. However, persistent errors in these areas show that neither numerical nor deep learning models achieve
optimal performance without targeted improvements. Despite these challenges, GraphCast’s strong SST forecasting
skill demonstrates the potential of machine learning for ocean prediction. Advancing toward operational viability will
require reducing sensitivity to initial condition errors—especially under strong mesoscale activity—through improved
data assimilation or hybrid modeling strategies. Architectural enhancements such as convolutional layers or attention
mechanisms may help mitigate artifacts efficiently, while scaling to multivariate forecasts will demand balancing
complexity and speed, possibly via latent representations and physics-informed regularization. Addressing regional
and seasonal variability will also require adaptive graph structures and real-time forcing assimilation, with focused
validation in key regions like upwelling systems to ensure robustness and reliability.

6 Conclusion

This work presented a detailed evaluation of deep learning architectures for oceanographic forecasting, focusing on an
adapted version of GraphCast applied to the Canary Upwelling System. GraphCast achieved high spatial resolution
and forecasting accuracy, surpassing ConvLSTM and traditional reanalysis products like GLORYS. These results
highlighted the capacity of graph-based models to resolve mesoscale features such as filaments and eddies below 20 km
in scale, offering a promising direction for data-driven approaches in operational oceanography.

Nonetheless, our findings also revealed important trade-offs. While GraphCast excelled in spatial precision, it exhibited
increased sensitivity to initial condition errors, especially during summer upwelling seasons when ocean variability is
highest. In contrast, ConvLSTM provided greater temporal stability due to its convolutional smoothing, but at the cost
of lower spatial fidelity. These differences underscore the potential of hybrid architectures that combine the strengths of
both models to balance robustness and detail in multi-day forecasts.

The analysis further showed distinct seasonal and regional error patterns. Both models performed best under winter
steady-state conditions and struggled during high-variability summer periods. Spatial error concentrations were
particularly pronounced near coastal capes, where bathymetric complexity and submesoscale processes below the
resolution of current L4 SST training data introduced persistent inaccuracies. Additionally, the dependence on SST
limited the capacity of models to provide a full representation of the ocean state, highlighting the need for physics-
informed, multivariate model extensions.

Future developments should focus on hybrid architectures, improved data assimilation methods, and curated high-
resolution training datasets capable of capturing small-scale dynamics. Expanding the prediction scope beyond
SST—incorporating currents, salinity, and other variables—will enhance model relevance for marine resource manage-
ment. Regionally adaptive graph designs that account for bathymetric and dynamical physical gradients will also be
essential for mitigating systematic errors in critical areas such as coastal capes.

This study supports the growing role of machine learning in ocean prediction, while pointing out key innovations to
fully realize its potential in operational settings. Our findings position data-driven ocean prediction models as scalable
alternatives to traditional numerical systems, with the ability to enhance the resolution, speed, and adaptability of
next-generation ocean forecasting systems.
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Data availability

The data and code used in this paper are available at the following URLs:

* The European North West Shelf/Iberia Biscay Irish Seas - High Resolution L4 Sea Surface Temperature
Reprocessed is available at https://doi.org/10.48670/moi-00153

* GLORYS is available at https://doi.org/10.48670/moi-00021.

* The source code of our models is publicly available at https://github.com/gacuervol/
regional-graphcast-sst.git|/under the MIT licence.

Computational library

The methodology is implemented in Python using the JAX library for efficient multi-GPU deep learning training.
Atmospheric and oceanographic datasets are processed using Xarray, enabling scalable handling of multi-dimensional
arrays, while evaluation metrics are computed with NumPy. The deep learning models are constructed using Google
DeepMind Flax and Haiku frameworks, which are optimized for JAX, enabling high-performance model development.

A Model Configuration, training protocols and experimental setup

A.1 Training details

The dataset was split into training, validation, and test sets using an 80/10/10 ratio, based on years rather than individual
days. This temporal division preserves the representativeness of seasonal cycles in each subset. The training set covers
1982 to 2012 (31 years), the validation set spans from 2013 to 2016 (4 years), and the test set includes 2017 to 2020 (4
years). This scheme prioritizes training with historical data while testing is conducted with the most recent information.

The samples in the training set are organized into windows of three consecutive dates, with each window overlapping
the next one by a single day. This approach maintains continuity in prediction trajectories while maximizing the use of
available data.
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We used each set to generate time forcings, providing the model with temporal context for the current day and year. As
in|Lam et al.| (2023)), we calculated these forcings as seconds starting at the UNIX epoch from January 1, 1970, and
encoded them using sine and cosine transformations to capture cyclical patterns.

For training, we organized the dataset into batches of eight samples. Each batch consists of three components: i) the
input data, which includes the initial conditions for SST over two days; ii) the target data, representing the SST values
for the lead times (days to predict); and iii) the forcing data, which includes the time-generated forcings for the lead
times and the static land-sea mask. To ensure a stable optimization process, we applied shuffling exclusively to the
training set, while the validation and test sets remained unshuffled to maintain their temporal structure.

We computed normalization factors, such as the mean, standard deviation, and standard deviation of temporal changes,
using the training set. These factors were then applied to normalize the dataset, ensuring consistent scaling across all
samples. This preprocessing step improved model stability and enhanced training performance by standardizing the
input distribution.

We adopted the training methodologies from [Lam et al.| (2023), excluding the initial warm-up phase because our
experiments did not indicate a significant impact. Our training strategy comprised a 150-epoch training phase,
completed in approximately 64 hours. We adjusted the learning rate using a half-cosine decay function, gradually
reducing it from 1072 to zero and updating it after each iteration. The training phase was oriented to forecasting one
lead time with samples of three-time instants, (x!~1, x!) — x!*1.

We used gradient descent to optimize the loss function. For adaptive moment estimation and weight decay management,
we utilized the AdamW optimizer with parameters 3; = 0,9, 82 = 0,95, ¢ = 1078, and A = 0,1. Furthermore, we
implemented gradient clipping with a maximum norm value of 32 to ensure stable training dynamics.

A.2 Model configuration

The ConvLSTM model employed in this study was specifically designed for spatiotemporal ocean prediction. To ensure
a fair comparison with GraphCast, the model was configured and trained under similar configurations. It comprised
two stacked ConvLSTM layers: the first layer contained 8 feature channels, and the second layer reduced this to 1
feature channel. Both layers utilized a 3 x 3 kernel with a stride of 1 and padding of 1. The input sequences had a
shape corresponding to a batch size of 8, two time steps, and spatial dimensions of 256 x 256 with a single-channel
input. The model was optimized using the AdamW optimizer, with a learning rate of 1072 and a weight decay of 0,1.
Training was conducted over 150 epochs, with updates for single-time-step predictions.

The architecture of the graph-based approach employed three levels of multi-mesh refinement, M3, implemented by
recursively subdividing triangular mesh elements into smaller components. The grid structure operated at a resolution
of 0,05° derived from the satellite L4 product resolution in the training data. Spatial connectivity was regulated by a
parameter that defined the neighborhood radius for each mesh node, set at 0.6 times the edge length. Within this range,
grid nodes were connected to the corresponding mesh node in the encoder, ensuring localized information aggregation.
The processor module performed 6 message-passing steps within an 8-dimensional MLP latent space, with all MLPs
containing a single hidden layer. In the decoder, edge normalization for mesh-to-grid transitions was performed using
the maximum edge length. This configuration effectively balanced model complexity and computational efficiency.

A.3 Spatially-weighted Loss function

Most weather prediction studies use the Mean Squared Error (MSE) to optimize the neural network parameters during
training. Since the area of a spherical grid cell decreases toward the geographic poles, MSE is often adjusted by latitude
to account for this distortion. Common approaches include weighting by the cosine of the latitude (Rasp et al.| [2020;
Lam et al.,2023) or by using the difference between the sines of the cell’s edges (Rasp et al.,[2024), both of which serve
as relative indicators of grid cell area. Without such adjustments, large errors in small high-latitude cells are treated the
same as small errors in much larger equatorial cells, leading to spatial imbalance in the loss. Therefore, many global
prediction studies use latitude-weighted MSE.

However, in this study, we adopt a different strategy that focuses the learning process exclusively on the ocean by
applying a spatial mask derived from the structure of the data. This spatial mask assigns a weight of zero to grid
cells over land and a weight of one to cells over the ocean. These binary weights are used to exclude land areas from
contributing to the loss computation, effectively masking out irrelevant regions and ensuring that the loss is computed
only over ocean areas. This approach is particularly well suited to our setup, which targets a geographically limited
domain. In such cases, the variation in latitude across the domain is relatively small, and the differences in grid cell area
are minimal. Therefore, the benefit of applying latitude-based weighting is negligible, and the masking strategy offers a
more direct way to focus the training process on the regions of interest.
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The loss function is thus defined as:
to+ Nrollout
1 0+ NRol

Lymsg = ——
Nrollout

G o (@)’

t=to+1 | Ocean‘ V; €Gocean

where

e tg is the initial forecast time,

* NRolout 18 the number of rollout steps used during training,

* v; is a grid point defined by its latitude (¢) and longitude (),
G is the full spatial grid, and |G| = |¢| - |2,

* Gocean C G is the subset of grid points located over the ocean, determined using a binary land—ocean mask
m; € {0,1}, where m; = 1 indicates ocean and m; = 0 indicates land.

A.4 Experimental setup

We used two computers to conduct our experiments. The first machine, a local workstation equipped with a single
Quadro RTX 4000 GPU with 8 GB of memory, was used for hyperparameter tuning. The second machine, a remote
server with 8 Quadro RTX 4000 GPUs and 8 GB of memory, was utilized for training the final model with the full
dataset. The training phase on the remote server took approximately 64 hours. Our software stack included JAX, Haiku,
Jraph, Optax, Jaxline, and xarray (Hoyer and Hamman| |2017) for model customization and training.

During the development phase on the local machine, we conducted a hyperparameter search to explore various
configurations. Specifically, we investigated the number of message-passing steps {2, 6, 7}, latent size {2, 4, 8,16}, and
the mesh refinement level {2,4, 6} denoted as M". We tested batch sizes of 8 and 16, as preliminary results indicated
that batch size had a negligible impact on the model’s performance. To efficiently cover a wide range of configurations,
we performed a grid search over these three hyperparameters, limiting the number of combinations while ensuring a
comprehensive exploration.

Once the hyperparameters were determined, we proceeded to train the final model on the remote server using the full
dataset. To optimize the training process, we parallelized it using the Distributed Data-Parallel (DDP) strategy (L1
et al.,|2020). In this setup, each of the 8 GPUs held its copy of the model and processed a separate batch of data. After
processing, we used the all-reduce operation to combine the gradients from all GPUs into a unified gradient, which was
then used to update the model weights.

To accommodate the parallel processing, we added a new dimension to the data called device, with a size equal to
8 GPUs. This modified the data dimensions to 8 devices, 8 batches, 1 to n lead-time predictions, and 300 x 300
latitude-longitude size. Each GPU was assigned identical initialized weights, and during each training step, a forward
pass was performed to calculate the loss and gradients for its assigned batch. At the end of the step, the gradients were
summed on the CPU, and the resulting unified gradient was used to update the model weights across all GPUs.

This process was repeated iteratively until only residual batches remained. Since the number of residual batches was
smaller than 8 (the number of GPUs), they could not be parallelized and were instead processed sequentially on the
CPU.

B Graph Neural Network Model

Let x : R? — R be a spatiotemporal variable containing the SST volume for our period of study. Each sequence value
is represented as x!, with i standing for node in a grid v; € V9, and ¢ the time instant. For simplicity, let x* be the SST
bidimensional array for time ¢ and x; the temporal evolution of the SST in node . Each node v; has a latitude-longitude
position given by (¢;, A;).

Our method is based on the GraphCast model (Lam et al., 2023)), which is defined as an autoregressive model:
X = f( %), 3)

where the %‘*! map is a forecast obtained from two previous time instants. This output can be iteratively fed into the
model to predict consecutive forecastings in a roll-out manner.

The graph of the model, G(V9, V™ E™ & g2m_gm2g ), is composed of grid nodes, V9, mesh nodes, V™, bidirectional
edges connecting mesh nodes, £™, and directed edges from grid to mesh nodes, £92™, and vice-versa, £™29.
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Each node in the grid, v/ € V9, is built from the SST values in times ¢ and ¢ — 1, several external forcings in times

t —1,tand ¢+ 1, and constant values, i.e., v/ = [z}, xt ! ft L £, ft+1 ,Ci], in a given latitude-longitude position.
The forcings are defined by £ = [sin(h), cos(h) sin(y), cos(y)] with  the local time of day and y the year progress,

normalized to [0, 1). The constants are defined as ¢; = [mq/ !

27 cos(;),sin(\;), cos(\;)], with m®/? a binary land-sea
mask and no physical forcings.

Each node in the mesh, vi* € V™, is defined as v;" = [cos(¢;), sin();), cos()\;)] and the mesh edges, e’ € £™, from

the sender node s to the receiver node 7, contains the following features: e, [d1stance(s r),Ps — Pr ], i.e. the edge
length and the difference between the 3D spatial locations of nodes s and 7. shows a representation of the
multi-mesh with three levels of resolution.

Unidirectional edges from the grid to the mesh are similarly defined by eJ%™ = [distance(s, r), ps — p,]. In this case,
the sender node is on the grid and the receiver is on the mesh. An edge is added between two nodes if distance(s, ) is
smaller than or equal to 0,6 times the length of the edges at the finest scale.

Similarly, unidirectional edges from the mesh to the grid are defined by em29 = [distance(s, ), ps — P-]. An edge is
created with the three mesh nodes of the triangular face that contains the grld node.

B.1 Encoder

The encoder maps the input data from the latitude- longitude grid into the multi-scale mesh. It relies on multi-layer
perceptrons (MLP) to embed the graph variables, v/ ,er eg2m and eng into a latent space:

i}f = MLPW (v?),
M = MLPym (v
& = MLPgn (el
egfrm MLPgo2m (€7
(eg

~m2
8729 = MLPgmz, (e

);
)
s
7). “
Then, the information from the grid is transferred to the mesh using interaction networks (IN) (Battaglia et al., 2016).
First, the edges are updated with information from the sending and receiving nodes,

def’" = MLPgozn ([8277, 87, 1)), )

and the mesh nodes are updated by aggregating the edges as

dv}" =MLPy. | 0", ) &, (©)
SEVI;r=v"

with s the set of nodes in the grid that have an edge towards v;". The grid nodes are also updated as

dv? = MLPy, (VY), (N
All MLPs in these equations are independent and do not share their parameters. Finally, the latent variables are updated
with residual connections as

V) 9 +dvy,

{};n "7” + dv

=g2m g2m ng
el «— el + desﬂ, . ®)
B.2 Processor

The processor performs learned message-passing through several layers on the multi-mesh. First, the edges are updated
through an MLP, concatenating the mesh edge with the receiver and sender nodes’ latent variables as

dé’;’j MLPgm ([ S’m7 I‘m] ) . (9)

8,17

Mesh nodes are updated by aggregating the edges as

dv* =MLPyn | ([, > &), (10)

i s,T
sEVT i r=v"
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and the variables are updated as a residual connection as
Vi v 4 dvT,
=m =~m ~m
e, < e;, +deg,. (11)

This process represents one layer of the processor. It contains multiple iterative layers with independent MLP parameters
that perform several message-passing operations.

B.3 Decoder

The decoder performs the inverse mapping from the mesh to the latitude-longitude grid. First, the edges from the mesh
to the grid are updated as
d&]"?? = MLPguma, [87'29, 8™, 17]). (12)

s,r

The grid nodes are then updated, aggregating the information of the three edges that arrive at the grid node:

dv! =MLPy, ([0, S de.’]]. (13)

seV9r=v?

A residual connection is used to update the information of the grid nodes coming from the embedding in the encoder:
V) VI +dvY, (14)
and the output prediction is obtained with another MLP as

¥' = MLPy, (V). (15)

Finally, the forecasting is obtained as a residual connection with the input data as

)A(t-‘rl — Xt + yt

All input variables are normalized to zero mean and unit variance. The output variable y* is multiplied by the average
standard deviation of the temporal change d% = %'*! — %? computed from the train set.

All MLPs have one hidden layer with a latent dimension of 8, the same as the output layer. The size of the output layer
in the last MLP, corresponding to the decoder, is one for the prediction of the value of the SST at each node.

C Description of the evaluation metrics

In this study, we used four metrics to assess the performance of the ocean prediction models: the Anomaly Correlation
Coefficient (ACC), the Root Mean Square Error (RMSE), the Activity (ACT), and the Bias. While there are several
ways to define those metrics, we use the approach outlined by [Bouallegue et al.[(2024)) as it aligns with the scores set
by the World Meteorological Organization (WMO) and the ECMWE. Below is a detailed description of each metric,
including its mathematical formulation and interpretation.

The RMSE quantifies the average magnitude of the prediction error, providing a measure of the overall accuracy of the
model. The ACC evaluates the linear association between the predicted and observed anomalies, serving as an indicator
of the model’s skill in capturing the spatiotemporal variability of the ocean field. The Bias represents the systematic
offset between predictions and observations, while ACT is defined as the standard deviation of the predicted anomalies
and reflects the model’s ability to reproduce the observed variability amplitude given a measure of the smoothness of
the forecast.

C.1 Anomaly Correlation Coefficient (ACC)

The ACC measures the correlation between the predicted and observed anomalies, evaluating the model’s ability to
predict deviations from the climatology. It is calculated as:

ace - a —a(a,—a) 6

/. /. ?

Va2 @ )
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where af = Jgf — ¢! denotes the predicted anomaly (prediction deviation from climatology c!) and a, = x! — ¢! the

observed anomaly (ground truth deviation) for a given time and location. (-) = ﬁ >~ wg (-) represents the latitudinal
v, €G

weighted spatial average, where wy is the latitude-weighting factor based on the cosine of the latitude expressed in

radians (Geerl [2016} Rasp et al.,2020; |Lam et al.,|2023)). This weighting scheme ensures that regions near the equator,

where the longitudinal distance between grid points is larger, are not underrepresented in the score calculation.

The ACC ranges between -1 and 1, where values close to 1 indicate a high positive correlation between the predicted
and observed anomalies. This metric is widely used in forecast verification studies (ECMWF).

C.2 Root Mean Square Error (RMSE)

The RMSE quantifies the average magnitude of the difference between the predicted and observed values, providing a
measure of the model’s overall accuracy. It is defined as:

RMSE = \/ (2! — a1)*, (17)

where 2! is the predicted value and z! is the ground truth value at a given time and grid cell.

A lower RMSE indicates better predictive accuracy, making it one of the most common metrics for forecast verification.

C.3 Activity (ACT)

The Activity assesses the model’s ability to reproduce the observed variability by measuring the standard deviation of
the predicted and observed anomaly fields:

ACT; = \/(a; —ay)?, ACT, = 1/ (a, — ay)2. (18)

19)

A similar ACT between predictions and observations suggests that the model accurately captures the spatial variability
of the ocean field. This score was originally proposed by Thorpe et al.|(2013) and later adopted by Bouallegue et al.
(2024)) to assess the smoothness of the forecast.

The relative activity (RA) of a model is defined as the ratio between the forecast ACT and the observed ACT (Bechtold
et al.,|2008). Analyzing RA as a function of forecast lead time reveals whether the model underestimates variability
(producing smoother forecasts) or overestimates it (producing noisier forecasts):

ACT;

RA = :
ACT,

(20)

C.4 Bias

The Bias quantifies the systematic difference between the predicted and observed values, indicating whether the model
tends to overestimate or underestimate the observations. It is calculated as:

Bias = (2! — ). (21)
A Bias close to zero implies that the model does not present systematic overestimation or underestimation of the
observations. This metric is commonly used in the verification of ocean and atmospheric models.

These metrics provide a comprehensive assessment of the models’ performance, allowing us to quantify their predictive
skill across different aspects of the forecast quality.
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