Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/146603
Título: Optimizing Hybrid Renewable Systems for Critical Loads in Andean Medical Centers Using Metaheuristics
Autores/as: Zarate Perez, Eliseo
Colmenar Santos, Antonio
Rosales Asensio, Enrique 
Clasificación UNESCO: 3306 Ingeniería y tecnología eléctricas
330506 Ingeniería civil
Palabras clave: Hybrid Renewable Energy Systems
Rural Electrification
Critical Load Management
Metaheuristic Optimization
Genetic Algorithm, et al.
Fecha de publicación: 2025
Publicación seriada: Electronics 
Resumen: The electrification of rural medical centers in high Andean areas represents a critical challenge for equitable development due to limited access to reliable energy. Hybrid Renewable Energy Systems (HRESs), which combine solar photovoltaic generation, Battery Energy Storage Systems (BESSs), and backup diesel generators, are emerging as viable solutions to ensure the supply of critical loads. However, their effective implementation requires optimal sizing methodologies that consider multiple technical and economic constraints and objectives. In this study, an optimization model based on metaheuristic algorithms is developed, specifically, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO), to identify optimal configurations of an HRES applied to a remote medical center in the Peruvian Andes. The results show that GA achieved the lowest Life Cycle Cost (LCC), with a high share of renewable energy (64.04%) and zero Energy Not Supplied (ENS) defined as the amount of load demand not met by the system, significantly outperforming PSO and ACO. GA was also found to offer greater stability and operational robustness. These findings confirm the effectiveness of metaheuristic methods for designing efficient and resilient energy solutions adapted to isolated rural contexts.
URI: https://accedacris.ulpgc.es/handle/10553/146603
ISSN: 2079-9292
DOI: 10.3390/electronics14163273
Fuente: Electronics [ISSN 2079-9292],v. 14 (16), (Agosto 2025)
Colección:Artículos
Adobe PDF (2,45 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.