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Abstract

The electrification of rural medical centers in high Andean areas represents a critical
challenge for equitable development due to limited access to reliable energy. Hybrid
Renewable Energy Systems (HRESs), which combine solar photovoltaic generation, Battery
Energy Storage Systems (BESSs), and backup diesel generators, are emerging as viable
solutions to ensure the supply of critical loads. However, their effective implementation
requires optimal sizing methodologies that consider multiple technical and economic
constraints and objectives. In this study, an optimization model based on metaheuristic
algorithms is developed, specifically, Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), and Ant Colony Optimization (ACO), to identify optimal configurations of an HRES
applied to a remote medical center in the Peruvian Andes. The results show that GA
achieved the lowest Life Cycle Cost (LCC), with a high share of renewable energy (64.04%)
and zero Energy Not Supplied (ENS) defined as the amount of load demand not met
by the system, significantly outperforming PSO and ACO. GA was also found to offer
greater stability and operational robustness. These findings confirm the effectiveness of
metaheuristic methods for designing efficient and resilient energy solutions adapted to
isolated rural contexts.

Keywords: hybrid renewable energy systems; rural electrification; critical load manage-
ment; metaheuristic optimization; genetic algorithm; particle swarm optimization; ant
colony optimization; medical facilities; off-grid systems; Andean region

1. Introduction

In rural and peripheral areas, the lack of reliable access to energy limits social, eco-
nomic, and health development. The energy gap between urban and rural areas remains
significant, especially in low-income countries, where millions of people lack access to mod-
ern energy services [1,2]. This deficiency directly affects the functioning of rural medical
centers, compromising the refrigeration of medicines, the use of essential equipment, and
continuous medical care [3,4]. In this context, medical centers in remote rural areas face
critical challenges due to the lack of reliable electricity, which seriously compromises the
quality of medical care. In various regions, distributed renewable energy has been shown to
significantly improve the resilience and operational autonomy of these facilities. Therefore,
ensuring energy supply in these environments is not only a technical challenge but also a
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health and development priority [3]. In addition, the lack of reliable energy limits access
to other essential services such as education and economic productivity, thus deepening
energy poverty [1]. Accordingly, enhancing resilience and sustainability in these complex
environments is essential [5].

Given this problem, renewable energy is positioned as a key solution for providing
electricity to rural health centers disconnected from the grid. Hybrid systems that combine
sources such as solar photovoltaic, battery storage, and backup diesel generators can im-
prove the quality of medical services, reduce emissions, and lower long-term operating
costs. However, these systems face persistent challenges such as high initial costs, main-
tenance complexity, and variability in renewable generation [6—8]. Several studies have
evaluated the effectiveness of these hybrid configurations in rural contexts. In general, they
have been found to ensure a reliable and continuous energy supply, reducing dependence
on fossil fuels and improving operational resilience. In addition, optimizing the sizing of
components, considering critical demand, costs, and available resources, has been key to
improving technical and economic viability [9-11].

In this regard, hybrid renewable energy systems (SHERs) have gained prominence,
especially in rural clinics, due to their ability to ensure a stable electricity supply even under
adverse weather conditions. However, their implementation is not without limitations,
including oversized components, high initial costs, and maintenance difficulties, which
affect their sustainability in low-resource contexts [12]. In response to these limitations, the
literature has proposed the use of different techniques applied in this context. These include
deterministic methods such as linear programming (LP) [13], mixed-integer programming
(MILP) [14], nonlinear programming (NLP) [15], and dynamic programming (DP) [16],
applied mainly in cost optimization, economic dispatch, and energy planning under tech-
nical constraints. These approaches have proven useful in well-structured contexts with
accurate data and relatively stable conditions. However, their performance is limited to
multivariable problems with high uncertainty or multiple conflicting objectives, as is often
the case in disconnected rural microgrids, where weather and demand conditions can be
highly variable and unpredictable.

At the same time, simulation tools such as HOMER Pro, iHOGA, TRNSYS, PV*SOL,
and modeling environments such as MATLAB/Simulink have been developed and used to
evaluate energy configurations from a technical-economic perspective [17-19]. These plat-
forms allow modeling of hourly load profiles, analysis of renewable resource availability,
simulation of the operation of components such as batteries and generators, and calcula-
tion of metrics such as life cycle cost (LCOE), carbon emissions, and renewable fraction.
While many of these tools include basic optimization modules or allow integration with
external routines, much of the process relies on manual iterative analysis or comparisons
between predefined scenarios, which can limit their efficiency in finding optimal global
configurations. Given this limitation, there is a need to incorporate more flexible and robust
approaches, such as metaheuristic algorithms, which allow for the exploration of large
search spaces and the resolution of nonlinear, stochastic, and multi-constrained problems.

The use of metaheuristic algorithms as an effective strategy for the optimal design and
operation of microgrids would solve complex, nonlinear, and multivariable problems with
demanding constraints, such as economic dispatch. For example, ref. [20] compared five
metaheuristic algorithms and demonstrated that they achieve efficient and stable solutions
in less time, significantly reducing the LCOE. Similarly, ref. [21] demonstrated that the
integration of batteries, supercapacitors, and fuel cells in an HESS system, optimized
using Particle Swarm Optimization (PSO) and Backtracking Search Algorithm (BSA),
improves the stability, efficiency, and energy autonomy of the microgrid. Similarly, ref. [22]
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highlighted the applicability of PSO and genetic algorithms (GAs) in terms of cost savings
and scheduling efficiency in grid-connected PV-BESS.

Other studies, such as the one by [23], have confirmed that algorithms such as GA and
ant colony optimization (ACO) exhibit good accuracy, dynamic response, and robustness in
hybrid storage control. In addition, ref. [24] emphasize that these algorithms are superior
to classical programming methods, thanks to their adaptability and efficiency in real-world
environments with multiple objectives. To achieve efficient implementation of SHERs,
advanced tools are required to enable optimal sizing and effective operation under diverse
local conditions. Among the most widely used algorithms in these contexts are GA, PSO,
and ACO, recognized for their versatility in handling multiple objectives and constraints.
However, despite the growing number of studies on hybrid microgrids, a significant gap
has been identified in the Andean rural context.

Extreme weather conditions, geographical dispersion, and budget constraints require
robust and adaptive models. In addition, few studies explicitly prioritize critical load
attention in medical centers and systematically compare the performance of different
algorithms under the same operational framework. Therefore, this study aims to develop
an optimization model based on metaheuristic algorithms to design optimal configurations
of hybrid renewable energy systems that guarantee the supply of critical loads in remote
medical centers in Peru’s high Andean regions, comparing the performance of GA, PSO,
and ACO.

In conclusion, the literature shows persistent gaps in the Andean rural context. There
is a limited focus on ensuring critical load supply in medical centers, and there is an absence
of systematic comparisons of GA, PSO, and ACO under identical operational conditions.
This study addresses these challenges by proposing a PV-BESS—diesel system optimization
model that integrates real demand profiles and long-term climatic data. This model enables
robust technical and economic evaluations and provides practical recommendations for
isolated healthcare facilities.

Next, the simulation methodology used to model the hybrid system (PV-BESS-diesel)
will be presented, including the critical demand profile, local climatic conditions, and tech-
nical and economic parameters. The use of GA, PSO, and ACO algorithms as optimization
tools will be explained, detailing their configurations and evaluation criteria. The optimal
configurations obtained by each algorithm will be compared, analyzing key metrics such as
life cycle cost (LCC), renewable share, energy not supplied (ENS), and operational robust-
ness. In addition, the stability of the results and their sensitivity to input conditions will be
discussed. Finally, the main findings of this study will be summarized, highlighting the
algorithm that achieved the best technical-economic performance, and recommendations
will be proposed for the actual implementation of SHERs in rural medical centers in Peru.

2. Materials and Methods

This study presents applied research with a quantitative-computational approach,
focused on the design and evaluation of SHERSs, with the aim of ensuring uninterrupted en-
ergy supply to critical loads in a medical center located in a remote area of Peru. To this end,
an optimization model based on metaheuristic algorithms was developed, which allows
different technological configurations to be compared considering technical, economic, and
sustainability criteria, as shown in Figure 1.
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Figure 1. Methodological sequence used. Source: own elaboration.

2.1. Materials

Real data from a rural medical center in Peru was used for the annual simulation of
the system. The model incorporates hourly solar irradiance (W/ mz), wind speed (m/s),
ambient temperature (°C), hourly electricity demand profile (kWh), and the technical and
economic parameters of the technologies considered as its main inputs. Figure 2 shows the
time series for 2024 for global horizontal irradiance [GHI, I(t)], wind speed [v(t)], ambient
temperature [Ta(t)], and electricity demand at the health center [D(t)]. The climate data were
obtained from the National Solar Radiation Database (NSRDB) [25], while the electricity
consumption profile was compiled from the establishment’s energy records.
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Figure 2. Annual variation in the main climate variables and electricity demand profile: (a) wind

speed [25], (b) global horizontal irradiance (GHI) [25], (c) ambient temperature [25], (d) hourly
electricity demand of the medical center [Authors” own data collection].
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Table 1 summarizes the technical parameters of the photovoltaic module considered in
the model. A 480 Wp panel with high efficiency (20.2%) and negative power temperature
coefficient (—0.35%/°C) was selected, which is suitable for high-altitude tropical climates
such as that of the remote region evaluated in Peru. The voltage and current at the
maximum power point (Vmp =41.88 V, Imp = 11.47 A) are compatible with commercial
series/parallel configurations.

Table 1. Technical parameters of the PV module used as input data for the simulation model under
standard test conditions.

Technical Parameter Value
Nominal Power (Pmax) 480 Wp
Voltage at Maximum Power (Vmp) 4188V
Current at Maximum Power (Imp) 1147 A
Module Efficiency 20.20%
Temperature Coefficient (Pmax) —0.35%/°C
Nominal Operating Cell Temperature (NOCT) 45 £2°C
Module Dimensions 1903 x 1134 x 30 mm
Estimated Commercial Price (excluding VAT) ~184 USD

Source: JA Solar, “JAM66S30 480-505 MR” datasheet [26].

Table 2 presents the technical characteristics of the wind turbine considered in the
model. A horizontal axis turbine with a nominal power of 2.0 kW was chosen, suitable
for applications in rural microgrids and environments with moderate wind speeds. The
system operates with a 48 V DC output, which facilitates its integration with battery banks.
The wind turbine has a start-up speed of 3.2 m/s, a nominal operating speed of 11.0 m/s,
and a cut-off speed of 25.0 m/s, values that allow it to operate efficiently under moderate
wind conditions.

Table 2. Technical and simulation parameters of the wind turbine used as input data for the model.

Technical Parameter Value Simulation Parameters Value

Rated Power 2.0 kW Installed Wind Power Pwind  Decision variable (multiples of 2 kW)
Output Voltage 48 V DC Simplified Power Curve Linear interpolation between:

Cut-in Wind Speed Vin 32m/s Vin=32m/s —0W

Rated Wind Speed Vrated 11.0m/s Vrated =11.0 m/s —2000 W

Cut-off Wind Speed Vcutoff 25.0m/s Vcutoff =25.0m/s —0W

Estimated Efficiency 30-35% Estimated Capacity Factor 15-25%

Estimated Price ~1800 USD

Source: Nanjing Oulu Electric Co., Ltd., “FD3.2-2000” wind turbine datasheet [27].

Table 3 summarizes the technical characteristics and simulation parameters of the
battery banks (BESS) used in the model. A lithium iron phosphate (LiFePO,) battery, model
TS-L5000/LV, was selected due to its high thermal stability, operational safety, and long
service life. The unit has a nominal capacity of 4.8 kWh, with a usable energy of 4.3 kWh
under standard discharge conditions.
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Table 3. Technical characteristics and simulation parameters of the LiFePO, battery used as input
data for the model.

Technical Parameter Value Technical Parameter Value

Battery type LiFePOy Lifespan >6000 cycles 80% DOD/>15 years
Total energy 4.8 kWh Certifications UL1973, CE, TUV, UN38.3
Usable energy (DC) 4.3 kWh Warranty 5 years

Nominal voltage 48 Vdc Simulation Parameters

Nominal discharge current 60 A Installed capacity (Ebatt) 4.8 kWh

Max discharge current (3 s) 100 A Maximum Depth of Discharge (DOD) 97%

Nominal charge/discharge power 3.0kW Efficiency (round-trip, assumed) 90-95%

Max discharge power (3 s) 6.0 kW Battery model integration Parallel configuration (up to 16 units)

Table 4 shows the technical and simulation parameters of the backup diesel generator
considered in the model. It is a single-phase 10 kW unit with an output voltage of 220 V
AC and an operating frequency of 50/60 Hz, powered by diesel. Its specific consumption
is in the range of 0.27-0.30 L/kWh, with an average consumption of 2.2-2.5 L/h at 75%
load. The starting system is electric (12 V) and offers an estimated autonomy of 20 to 25 h
with a full fuel tank.

Table 4. Technical characteristics and simulation parameters of the diesel backup generator used as
input data for the model.

Technical Parameter Range Technical Parameter Range
Rated power output 10 kW/12.5 kVA Estimated lifespan 5000-10,000 h
Voltage 220 V AC (single-phase) Simulation Parameters Value
Decision variable
Frequency 50/60 Hz Installed power (Pgen) (e.g., 315 kW)
Fuel type Diesel Fuel cost 1.35 USD/L
Fuel tank capacity 50-60 L Generator efficiency (1) 28-33%
Specific fuel consumption ~0.27-0.30 L/kWh Minimum load threshold 30% of rated power
Average fuel consumption . .
at 75% load 22-25L/h Emission factor (CO5) ~2.68 kg CO, /L diesel
Maintenance interval 250 h or monthly Operation mode (Only) Renewable + battery are

insufficient

Note: For simulation purposes, the following representative average values were used: fuel tank capacity =55 L,
generator efficiency = 30%, specific fuel consumption = 0.27 L/kWh, and average fuel consumption at 75% load =
2.35L/h.

2.2. Solar Photovoltaic (PV) Generation

The operating temperature of the photovoltaic cell directly influences the module’s
performance. As the temperature increases, efficiency decreases due to the panel’s negative
temperature coefficient (—0.35%/°C). To estimate the actual cell temperature, Tc(t), a
thermal model is used that considers the ambient temperature, solar irradiance, and
the NOCT (Normal Operating Cell Temperature) value of the module, as expressed in
Equation (1) [28].

NOCT — 20) 1)

Te(t) = Ta(t) + I(t)< 300
where T.(t) is the temperature of the photovoltaic cell at time t (°C); Ta(t) is the ambient
temperature at time t (°C); I(t) is the solar irradiance incident on the panel at t (W/ m?);
NOCT is the Nominal Operating Cell Temperature, typical of the module, generally ~45 °C.

In addition, the aim is to maximize solar energy capture during the winter season,
when irradiance is lower and the angle of solar incidence is lower. To this end, a panel
inclination greater than the latitude of the site was selected, which allows for the optimiza-
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tion of solar radiation utilization in conditions of low sun elevation above the horizon, as
expressed in Equation (2) [28].
B=¢+15° (2)

where (3 is the angle of inclination of the panel with respect to the horizontal (°); ® is the
latitude of the installation site (°); 15° allows for maximum generation in winter, at the
expense of a slight loss in summer.

Consequently, the instantaneous power generated by a photovoltaic panel is estimated
by considering the efficiency of the module, the effective area of the panel, the incident solar
irradiance, the effect of temperature, and a loss factor associated with dust accumulation,
as expressed in Equation (3) [29].

Py unie(t) = (Ya) (my) (Apy) (I(6) (1 B (1o 25)) ©)

100
where Y4 is the total annual energy demand (kWh/year), and K;, is the performance
factor accounting for system losses and design considerations. Thus, the total power
generated by the set of photovoltaic modules is obtained by multiplying the instantaneous
power generated by each unit by the total number of panels installed, as expressed in
Equation (4) [30].
Ppy(t) = (Npv)(Ppy unit(t)) 4)

where Ppy(t) represents the total electrical power supplied by the photovoltaic system at
time t (kW); Npy is the total number of photovoltaic modules in the system.

2.3. Wind Power Generation (WT)

To estimate wind speed at different heights, the power law is applied, which relates
wind speed to height above ground level using an empirical exponent (), as expressed in

Equation (5) [31].
v ("
== () ©

where v is the wind speed measured at height h1; v; is the estimated wind speed at height
hy; o is the Hellman exponent, which depends on the roughness of the terrain, between 0.1
and 0.3.

The power generated by a wind turbine unit is modeled using a step function, which
considers three operating ranges according to wind speed, as shown in Equation (6) [31].

0; VZ(t) < Veut—in

P (V2 V3 )
AT Ceutin) Ly < V() <V
Pvronio(®) = 4 Vo Vo) c0tin = V() < Viaed ©

Pwr ; Vriated < V(t) < Veut—out
0; Veut—out < V(t)

where without generation is when the wind speed is lower than the cut-in speed Vy¢—in,
or higher than the cut-out speed Vcut—out, the turbine does not produce energy; the partial
operating range is between V ut_in and Vi,ed, the power generated increases with the cube
of the wind speed, interpolating between zero and the rated power; the nominal range is
between Vi 4teq and Veut-out, When the turbine generates its maximum constant power PWT.

The instantaneous power generated by the entire wind system is obtained by multi-
plying the individual output of a wind turbine by the total number of units installed, as
shown in Equation (7) [31].

PWT(t): (NWT)(PWTunit (t)) (7)
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where Pwr(t) is the total power generated by the wind turbine array (kW); Nyr is the
total number of wind turbines in operation (dimensionless); Pyyrunit(t) is the instantaneous
power generated by a single turbine (kW).

2.4. Modeling of the Diesel Generator (2 kW)

In this model, the diesel backup system consists of modular 2 kW units. The total num-
ber of generators installed is a discrete decision variable within the optimization process.
Hourly fuel consumption is estimated using a linear relationship with the electrical power
delivered by the generator set. The power generated by the diesel system is expressed in
Equation (8); hourly diesel consumption is calculated according to Equation (9); and the
operating cost per hour is determined using Equation (10) [32].

Ppg (t) = min{max[D(t) — (va(t) + Pwr (t)),O],Z.NDG} (8)

where Ppg(t) is the power delivered by the diesel generator (kW); Npg is the number of
2 kW generators installed; and the output of the diesel generator is limited to 2.Npg kW.

fpg(t) = a.Ppg(t) +b.dpg(t) )

where a and b are typical consumption coefficients; a is equal to 0.246 L/kWh and b is
equal to 0.084 L/h; dpg(t) is the binary variable that is equal to 1 if the generator is on, 0 if
it is off.

COStDG(t) = fDG(t> - Cliter (10)

where Cjier &= 1.35 USD/L; the diesel backup system is modeled using 2 kW modular units;
the total number of generators installed, Npg, is an integer decision variable within the
optimization process; the maximum power that can be supplied at any given time is limited
by 2-Npg and is activated only when renewable generation does not cover demand.

2.5. Battery Energy Storage System (BESS) Modeling
The state of charge (SOC) is a parameter that indicates the amount of energy available
in the battery at a given moment, relative to its maximum capacity. This indicator, expressed
as a percentage, allows the current level of energy stored in the system to be monitored
and is calculated using Equation (11) [33].
M * Pchg(t) - Pdcnhij(t)
Chess

SOC(tJrl) = SOC(t) + (11)
where SOC 1) indicates the battery charge level at time t + 1, represented by a dimen-
sionless value ranging between 0 and 1; SOC(t) represents the initial state of charge of the
battery at time t; nc is the charging efficiency, dimensionless with values between 0 and 1
(in this case, a value of 0.9 is adopted); nd is the discharge efficiency, also dimensionless
and between 0 and 1; a value of 0.9 is considered; Pcg(t) denotes the power used to charge
the battery at time t, expressed in kilowatts (kW); Pycng(t) indicates the power extracted
from the battery at time t, also in kilowatts (kW); and Cbess represents the total storage
capacity of the battery system, measured in kilowatt-hours (kWh).

2.6. Model Restrictions

The optimization model considers technical, operational, and experimental configura-
tion constraints, which are detailed in Table 5.
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Table 5. Technical and economic parameters used in the optimization model.

Category Item Value
Photovoltaic Panels (PVs) 25 years
. Wind Turbines (WTs) 20 years
Expected Lifespan Lithium Batteries (BESS) 15 years
Diesel Generator (DG) 10 years
PV 1.5% of CAPEX
Estimated Annual O&M WT 2.5% of CAPEX
Cost BESS 1.5% of CAPEX
DG 7% of CAPEX + fuel
Discount Rate Discount Rate 6%
w 0.4% (Life Cycle
1 Cost—LCC)
Initial Weights (Objective w2 0'30/ o (System Reha}nhty)
Function) ws 0.2% (Proportion o
Renewable Energy)
w 0.1% (Minimizing
4 Surpluses)
Sensitivity Analysis Rangos =+ 20% Yes (Morris and Sobol)
Robustness Configuration 10 runs per configuration  Yes
Population size 30
GA Parameters Generations 100
pc 0.8
pm 0.1
Particles 30
PSO Parameters Iterations (PSOs) 100
w 0.5-0.9
Ants 30
ACO Parameters Iterations (ACOs) 100
P 0.1
PPV 1-20 kWp
. Pwind 1-10 kW
Variable Ranges Ebatt 5100 kWh
Pgen 3-15 kW

2.7. Hourly Energy Balance

To ensure that electricity demand is met at every hour of the simulation horizon, a
general energy balance equation is established that integrates all available sources in the
hybrid system: solar generation, wind generation, diesel backup, and battery storage. This
condition must be met at every hourly interval, as shown in Equation (12) [34].

Ppy (t) + Pwr(t) + Ppg(t) + Phatt—dis(t) > D(t) + Phatt—ch(t) (12)

where Ppy(t) is the power generated by solar panels; Pwr(t) is the instantaneous wind
power; Ppg(t) is the power supplied by the diesel system (max. 2:-Npg); Ppatt—dis(t) is the
battery discharge power; D(t) is the hourly demand of the system; and Ppa— ch(t) is the
power used to charge the battery. The storage system operates in either charge or discharge
mode, but not simultaneously.
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Technical constraints associated with the system variables are incorporated, con-
sidering the physical power limits for each technology. These limits are presented in
Equation (13) [34].

0 < Ppy(t) < Ppy*
0 < Pwr(t) < Ppy*
0 < Ppg(t) <2. Npg (13)
0 < Pyatt—dis (t)/Pbatt—ch(t) < Pg;i?

The restriction associated with the state of charge (SOC) of the batteries is shown in
Equation (14) [34]. This condition ensures that the battery bank operates within safe mar-
gins, preserving its useful life and preventing overcharging or deep discharge conditions.

SOCpin < SOC(t) < SOCpax (14)

The conditions that limit the energy stored in the battery system are expressed in
Equation (15), ensuring that the accumulated energy level remains within the defined
operating ranges [34].

SOC(t+1) = SOC(t) 4+ Nch-Ppatt—ch (t).At — Pbat:]:hS(t).At (15)
1S
where SOC(t) is the battery state of charge at time t (kWh); ndis is the charging and
discharging efficiency of the storage system; and At = 1 h is the simulation time interval.
Equation (16) imposes a restriction on the proportion of energy not supplied to critical
loads, requiring it to be kept below a maximum permissible threshold ¢, set at 1% [35]. This
condition ensures the operational continuity of priority loads.

unserved
Etehoras criticas Lt

<e (16)

): . Lcrit
t€horas criticas t

The restriction presented in Equation (17) ensures that each component of the system
operates within its rated capacity, limiting the maximum allowable power to prevent
overload conditions and ensure safe and efficient operation [35].

0< PPV,t < PPV,maX/ 0< 1—)wind,t < Pwind,maX/ 0< Pgen,t < Pgen,maXVt (17)

Equation (18) establishes a restriction that limits the maximum size of the battery bank
to avoid oversizing for technical and economic reasons [16].

Ebatt < Ebatt,max (18)

2.8. Metaheuristic Implementation
2.8.1. Genetic Algorithm (GA)

In this study, a GA was used to identify the optimal configuration of the HRES, maxi-
mizing a fitness function that integrates criteria of reliability, efficiency, energy utilization,
and operating costs.

In this algorithm, each candidate solution (individual) is represented by a chromosome
that encodes the design parameters of the hybrid system. This encoding is detailed in
Equation (19) [36].

X = [Npy, Nw, Nggss, Npg] (19)

where Npy represents the number of photovoltaic modules; Ny the number of wind
turbines; Npgss the number of battery units; and Npg the number of diesel generators.
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The coded representation of the individual is shown in Equation (20) [36].
x® = [xgi), xgi), xéi), xg)} eZ4 (20)

Each xj(i) represents a positive discrete decision variable for individual i. For example,
an individual could be X(i) = [1,3,4,12]. This is equivalent to 12 panels, 3 turbines, 4 batteries,
and 1 generator.

During the coding and evaluation process of individuals, restrictions are imposed on
the admissible ranges of each decision variable, as presented in Equation (21) [37].

min max
NPV < NPV < PPV
N;ﬂvln S NW S N[r/;:/ax
min max
NBESS < NBESS < NBESS (21)
NBE < Npg < NB&

During this stage, an initial population of N individuals is randomly generated, each
representing a feasible configuration of the hybrid system. Random generation is performed
under the constraints established in Equation (21), foralli=1,2, ..., n, considering only
integer values for the decision variables.

The fitness function was designed to integrate multiple performance criteria of
the hybrid system, including reliability, efficiency, energy utilization, and costs. This
function guides the evolutionary process of the genetic algorithm and is expressed in
Equation (22) [37].

_ Yi—1 ENS(t)
Y1 D(t)

YL Eexc(t) B LCC

ff = wq.(1 . Wy —————
f 1 ( 3 2;1;1 Pgen(t) 4 LCCmax

) + wZ-nsys —w (22)

where ENS(t) is the energy not supplied to critical loads at time t; D(t) is the total demand
at t; nsys is the overall efficiency of the system; Eexc(t) is the unused surplus energy; Pgen(t)
is the total energy generated; LCC is the life cycle cost of the system; Cmax is the maximum
reference cost value; and wj, wy, w3, and wy are the weightings for each criterion. A penalty
term was incorporated into the cost function to discourage system oversizing, ensuring
that installed capacities remain within an optimal range while maintaining reliability.
The weighting factors wq, wy, w3, and w4 were selected based on a sensitivity analysis,
ensuring a balanced trade-off between cost minimization, reliability, renewable share, and
oversizing penalties.

A hybrid strategy was applied to form the new population in each generation. First,
an elitist scheme was used to retain the best Ne individuals, ensuring the retention of high-
quality solutions. Then, the rest of the population was completed by binary tournament,
balancing selective pressure and genetic diversity. Elitist preservation is presented in
Equation (23) [38].

Elite = {i € Population|f¢(i) is among the top N, fitness values} (23)

For each tournament, two individuals, i; and i are randomly selected. The one with
the highest fitness value is selected, as shown in Equation (24) [38]. This procedure is
repeated until the total population size is reached.

Select — {il if fe(iy) > fe(ia) (24)

ip otherwise
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After the selection phase, the crossover operator is applied to generate new individuals
(offspring) by combining the genetic information of two parents. First, a crossover points ¢
€{1,2,..., L — 1} is randomly chosen, where L is the length of the chromosome. From that
point, segments are exchanged between two parents, as shown in Equation (25) [38].

Of fspring, = (xgl), xél), ceey x((;l), xgi)l, ...,xf)

Offspring, = (ng), xéz) PR ng) , X£1+)1/ cery x(Ll)) (25)

In uniform crossover, each gene (decision variable) of the offspring is randomly taken
from one of the two parents, with uniform probability, as shown in Equation (26) [37].

1.
(child) X; if 5 <05
- ()

) A
%

forj=1,2,...,L (26)

otherwise

where 1j ~ U (0,1) represents a random number generated with a continuous uniform
distribution in the interval [0,1].

Given that the model considers variables such as the number of panels, wind turbines,
or batteries (integer values), a discrete mutation is used, in which a variable X is replaced
by another permitted value within its domain, as shown in Equation (27) [37].

xj + & if rj < pp,
X.(mutated) _ { j j . J 27)
) x; otherwise
where d € {—1, +1} is a random discrete change according to the allowed range; rj~U [0,1].

After applying the mutation, the new mutated variable is verified to comply with
the technical constraints, as shown in Equation (28) [28]. Otherwise, it is automatically
corrected to the nearest limit.

Xj(mutated) c {ijinl ijax} (28)

Finally, the optimization process is repeated iteratively until a maximum number of
generations Gmax is reached or when the best fitness value is achieved during a defined
number of generations and is less than a predetermined threshold e. Formally, the stopping
criterion is expressed in Equation (29) [28].

Stop if : (g > Gmax) or (|68 — 57| < ) (29)

where g is the current generation, f;{8) is the best fitness value in generation g; k is the
number of generations to evaluate stagnation; € is a small positive threshold (e.g., 10~4).

2.8.2. Particle Swarm Optimization (PSO)

PSO is a metaheuristic technique inspired by the collective behavior of birds or fish
when searching for food. In this context, each candidate’s solution (particle) represents a
possible configuration of the hybrid energy generation system, and moves in the search
space guided by its best personal experience and the best global experience.

In particle coding, each particle represents a decision vector, as shown in Equation (30) [39].

Xi = [Xi1,Xi2, -, Xid] (30)

where xi is the position of particle i; d is the number of decision variables (panels, turbines,
batteries, and generator); and each component of xi is restricted by defined technical limits.
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At initialization, the population of N particles is randomly generated, assigning initial
positions and velocities within the limits of the problem, as shown in Equation (31) [40].

Vi = [Vi1,Vig, .. Vid) (31)

where vi is the velocity associated with particle i. Subsequently, each particle is evaluated
using the fitness function defined for the problem, integrating reliability criteria, energy
efficiency, and hybrid system costs.

Each particle dynamically adjusts its speed and position based on its own individual
experience, represented by the best personal position achieved (p;); the collective experience
of the swarm, reflected in the best global position found (g); and an inertia term that
preserves part of the previous displacement, as shown in Equation (32) [40].

(t+1) ( (1)

vy = @il +em (py = xi] ) + cn (g - X)) (32)

Therefore, the new position is determined in Equation (33) [38].

xi(gﬂ) = xi(’? + USH) (33)
where w is the inertia coefficient, which controls the impact of previous movement; c1 is
the individual learning coefficient, as influenced by personal experience; c2 is the social
learning coefficient, as influenced by the global best; rq, r,~U (0,1) are uniform random
variables to maintain diversity.

Finally, the algorithm stops when the maximum number of iterations (Tmax) is reached
or if the change in the highest global fitness value is less than a threshold e during k
consecutive iterations, indicating possible convergence, according to Equation (34) [41].

Stop if : (t = Tmax) or ([ — | <€) (34)

2.8.3. Ant Colony Optimization (ACO)

To represent the problem, each ant constructs a feasible solution by selecting discrete
values for each component of the system. That is, the Npy, Wnw, Npgss, and Npg.

For pheromone initialization, a uniform pheromone value T;(0) is initially assigned
to each possible choice of value j of component i, within its technical limits (Table 5), as
expressed in Equation (35) [42].

T;(0) = 7o (35)

where 7 is a small positive value that allows the search process to start with a uniform
probability distribution, encouraging exploration of the solution space.

To construct solutions, each ant constructs a solution by choosing the values of each
component according to a probabilistic rule based on the amount of pheromone and a
heuristic visibility, as shown in Equation (36) [43].

x B
g

Py = (36)

2_keFactibles Tﬁc( n 5’(
where T is the amount of pheromone at node j of component i; 0 is the heuristic visibility,
such as the inverse of the cost or inverse of the energy not supplied; o is the relative
importance of the pheromone; (3 is the importance of heuristic visibility.

Once the solutions of all ants have been generated, their fitness value is evaluated
using the objective function previously defined in Equation (22). The best solutions guide
the reinforcement of pheromones.
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For pheromone updating, they are updated according to the performance of the
solutions found. Evaporation and deposition proportional to the quality of the solution are
applied, as shown in Equation (37) [43].

m
k
Tij — (1 - P)Tij + kgl ATij
k f%/ if ant k used edge(i,j) (37
ATij = {0, otherwise

where p is the pheromone evaporation rate; Q is the positive constant; FX is the value of the
fitness function of ant k.

The solutions generated must comply with the technical ranges of each technology,
which are shown in Equation (38) [43].

Nrin < N < NP v e {PV, W, BESS, DG} (38)

GA, PSO, and ACO were selected because they have been proven to effectively address
multi-objective optimization in hybrid renewable energy systems, as consistently reported
in the literature. The parameter settings adopted for each algorithm are based on widely
accepted values from previous studies and were verified through preliminary simulations.
These settings ensure stable convergence and consistent performance under the case study’s
specific operational conditions.

2.9. Validation and Comparison of Results

Each algorithm was programmed in Python 3.11, and its parameters were adjusted
according to sensitivity tests to ensure stability and convergence.
The Morris method is used to evaluate the sensitivity of the model to individual
variations in the weights of the criteria, as shown in Equation (39) [44].
Y(Xl,. DX, X A, L .,Xt) —Y(Xl,. X, .,Xk)

EE;, = A (39)

For each criterion, the absolute mean of the elementary effects (u*) is calculated,
reflecting their overall influence, and the standard deviation (o) is calculated, measuring
possible interactions or nonlinearities, as indicated in Equations (40) and (41) [44].

i = 1y [EED| (40)
r =
Y Rl )
o= | — 1j§(EEi ul) 41)

The first-order index Si, calculated using the Sobol method, quantifies the proportion
of the output variance attributable exclusively to the direct effect of the input variable
X, without considering interactions with other variables. This index is expressed in
Equation (42) [44].

_ Vary [Ex (Y[ X))]

5i Var(Y)

(42)
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Similarly, the total St; index represents the contribution of Xj to the variance of the
model, including direct effects and interactions. It is calculated as shown in Equation (43),
normalized with respect to the total variance [44].

~_ Var(Y) — Vary; [Ex_, (Y [ X;)]
= Var(Y)

(43)

To verify the convergence of the algorithms, the stability of the solutions generated
from independent runs with different initial conditions was evaluated. Consistence in the
evolution of the fitness value across generations was used as an evaluation criterion, as
shown in Equation (44) [44].

z

Fitnessavg (g) = % fi(g) (44)

1

I
—

where Fitnessayg (g) is the average fitness value in generation g; N is the number of
individuals; and fj(g) is the fitness of individuals in that generation.

To evaluate the robustness of the genetic model with different weighting schemes
(environmental, technical, and economic), the nonparametric Friedman test was applied to
the final fitness values obtained in independent runs, according to Equation (45) [44].

12 &,
2= kn(kﬂ);R}. —3n(k+1) (45)

X

where xp? is the Friedman statistic; k is the number of schemes evaluated; n is the number
of repetitions; and R;is the sum of ranks of scheme j in the runs.

To evaluate the stability of the evolutionary model, the standard deviation of fitness
per generation was calculated from independent runs. This metric shows the dispersion of
performance during evolution and suggests whether there is consistent convergence, as
shown in Equation (46) [44].

1 R

) (tle) ~T(g)) (46)

r— 1r:l

O'g:

The Jaccard index (J) was also used to measure the similarity between sets of solutions,
defined by the technologies selected in each optimal result. This index varies between 0 (no
match) and 1 (total match), as shown in Equation (47) [44].

ANB

Jam =108 (47)

where A and B are the sets of technologies selected in optimal solutions 1 and 2, respectively;
|ANB| represents the elements in common; and |AUB| represents the total number of
elements that are different in at least one of the sets.

3. Results and Discussion
3.1. Statistical Analysis

Statistical analysis of the input variables shows that hourly electricity demand has
an approximately symmetrical distribution, centered on low values with an average close

to 0.2 kWh, with no significant outliers. The ambient temperature ranges between 8 °C
and 14 °C, with a narrow distribution consisting of the climatic conditions of high Andean
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areas. Global horizontal solar irradiance records zero values during a high percentage of
the time, corresponding to the nighttime period.

During daylight hours, useful values exceed 500 W/m?, which allows for the evalua-
tion of photovoltaic generation potential. In terms of wind speed, a concentration in the
range of 0.4 to 2.0 m/s is observed, below the typical minimum start-up threshold (3.2 m/s)
for the wind turbines considered, which limits their use for efficient wind power generation
(Figure 3).
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Figure 3. Annual distribution and dispersion of model variables: (a) hourly electricity demand
(kWh), (b) ambient temperature (°C), (c) global horizontal solar irradiance (GHI, W/ m?), (d) wind
speed (m/s).

Analysis of average hourly behavior shows that electricity demand follows a bimodal
pattern, with a slight peak in the morning (7-9 a.m.) and a more pronounced peak in the
evening (6-9 p.m.). Useful solar irradiance is concentrated between 7 a.m. and 5 p.m.,
with a maximum around midday, which defines the effective window for photovoltaic
generation. On the other hand, wind speed shows a slight increase during daylight hours
(10 a.m.—6 p.m.), but on average does not exceed 2 m/s, which limits its energy contribution.
The ambient temperature follows the expected thermal profile, with a gradual rise until
early afternoon (~2 p.m.) and a subsequent decline, as shown in Figure 4.

The monthly analysis shows that electricity demand varies slightly throughout the
year, with a slight increase during the winter months (June to August), possibly associated
with increased hospital activity during cold periods, as shown in Figure 5. At the same time,
global horizontal solar irradiance (GHI) reaches its maximum value between September
and November, while the minimum values are recorded between January and March. This
behavior is related to solar inclination and seasonal cloud cover, which directly influence
photovoltaic generation potential. Likewise, wind speed varies moderately, with peaks in
the middle months (April and October); however, its average monthly value remains below
2.5 m/s, which would significantly limit its contribution to the hybrid system. Finally, the
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ambient temperature varies between 9 °C and 12 °C, with a downward trend during the
winter, which, due to the negative thermal coefficient of the photovoltaic modules, may
slightly favor their performance under lower temperature conditions.

Average Curves per Hour of the Day
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Figure 4. Hourly average profiles of key variables: (a) electricity demand and solar irradiance;
(b) wind speed and ambient temperature.
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Figure 5. Monthly average values of electricity demand and weather variables. Note: for visualization
purposes, temperature was divided by 100, solar irradiance by 1000, and wind speed by 10. These
scaled values enable comparative analysis across different units and magnitudes.
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3.2. Comparison of Optimal Configurations

Table 6 presents the results of the annual simulation carried out with climate and
electricity demand data corresponding to a medical center located in a remote, high-altitude
area of Peru. In this study, the three metaheuristic algorithms (GA, PSO, and ACO) were
applied under the same set of technical constraints. The ranges defined for the decision
variables allowed for the selection of up to 20 photovoltaic panels, up to 140 kWh of
battery storage capacity, and up to 18 kW of power for the diesel generator, in multiples of
2 kW. The objective function combined economic and energy criteria, such as LCC, ENS,
renewable energy share, and energy surpluses.

Table 6. Comparison of optimal system configurations and performance metrics obtained with GA,
PSO, and ACO.

Type GA PSO ACO
PV (unit) 20 20 20
Wind (unit) 0 0 0
Battery (kWh) 40 40 140
Generator (kW) 2 2 12
LCC [USD] 10,213 10,213 26,213
ENS (%) 0 0 0
Renewable (%) 64.04 64.04 64.04
Excess energy (%) 7.88 7.88 39.69

As a result, both the GA and PSO algorithms identified with the same optimal config-
uration, consisting of 20 photovoltaic panels, 40 kWh of battery capacity, and a 2 kW diesel
generator. This solution achieved an ENS of 0%, a renewable share of 64.04%, an LCC of
USD 10,213, and an energy surplus of 7.88%. In contrast, the ACO algorithm proposed a
solution with greater installed capacity: 20 photovoltaic panels, 140 kWh of storage, and a
12 kW diesel generator. Although this configuration also achieved an ENS of 0% and the
same renewable share, it had a considerably higher LCC (USD 26,213) and a higher energy
surplus (39.69%), which represents unnecessary oversizing.

Additionally, none of the three optimized configurations included wind turbines. This
result is consistent with the preliminary statistical analysis, which showed predominantly
low wind speeds, between 0.4 and 2.0 m/s, which is below the typical minimum start-
up threshold for the wind turbines considered (approximately 3.2 m/s). Therefore, the
incorporation of wind technology was not feasible in the context evaluated.

It should be noted that the behavior of the ACO algorithm is explained by the absence
of a direct penalty for oversizing, which leads it to select configurations with higher installed
capacity without obtaining additional improvements in terms of reliability or renewable
share. In contrast, both GA and PSO achieved more efficient solutions by identifying
compact configurations that optimize the installed infrastructure and reduce the total cost
of the system.

Therefore, from a multi-criteria approach, the configuration proposed by GA and PSO
represents the most balanced and efficient alternative for the operational context evaluated.
This solution guarantees supply reliability (ENS equal to 0%), significant renewable share
(64.04%), a low level of surplus (7.88%), and the lowest total cost (USD 10,213). In com-
parison, the option generated by ACO, although viable, involves additional costs without
additional energy benefits. Therefore, the results show that the configuration generated by
GA and PSO is the most suitable for the conditions analyzed.

The identical results obtained with GA and PSO indicate that both algorithms con-
verged to the same global optimum under the defined search space and constraints. This
convergence is not due to limitations in the model but rather to the optimization land-
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scape, in which the optimal configuration is uniquely defined and robust to variations in
algorithmic search strategies.

Figure 6 shows the performance of the GA, PSO, and ACO algorithms considering
criteria such as LCC, ENS, renewable energy share, and energy surpluses. To facilitate
comparison, the values were normalized on a scale of 0 to 1. The results show that GA
and PSO simultaneously achieve the best performance in all evaluated criteria. Both
configurations have an ENS of zero, a low LCC, high renewable energy share, and minimal
energy surplus. As a result, their polygons completely overlap in the graph, indicating
equivalence in both technical and economic efficiency. Similarly, the ACO algorithm
maintains the same reliability (zero ENS) and renewable share; however, it exhibits lower
performance in the LCC and energy surplus criteria. This penalty is due to an oversized
solution, particularly in the capacity of the battery bank and diesel generator, which
unnecessarily increases costs and unused energy.

Normalized Multicriteria Performance Comparison
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Figure 6. Multicriteria comparison of the performance of GA, PSO, and ACO. Note: ENS (]): energy
not supplied [%]. LCC ({): life cycle cost [USD]. Excess energy (J): unused renewable energy [%].
Renewable share (1): renewable energy contribution [%].

Figure 7 shows the hourly curves for electricity demand, photovoltaic generation,
and diesel generator operation during the month of July. Photovoltaic generation follows
a regular daily pattern, with production between 6:00 a.m. and 6:00 p.m., reaching its
maximum value around midday. Electricity demand remains relatively stable, with slight
variations reflecting constant consumption throughout the month. The diesel generator
is activated on an ad hoc basis, mainly during nighttime hours or at times when solar
generation is insufficient to meet demand and the batteries do not have enough charge.
This intermittent operation of the generator highlights the predominantly renewable nature
of the system, with fossil fuel serving as an auxiliary backup to ensure continuity of supply.

Figure 8 shows the SOC of the BESS, calculated as the hourly mean for each hour of
the day across the entire year. The SOC reaches its peak between 10:00 a.m. and 5:00 p.m.
due to maximum PV generation and lower net load and gradually decreases during the
evening and night hours. The initial value (at 00:00) and the final value (at 23:00) differ
because they represent average values that do not necessarily correspond to a closed daily
cycle. The difference is a statistical result of aggregating days with varying demand and
generation patterns. The apparent drop after 11:00 p.m. reflects reduced PV input and
continued consumption; the curve ends at 23:00 as per the 24 h convention, with the next
day beginning again at 00:00.
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Hourly Demand and Generation Curves — July
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Figure 7. Hourly demand curves, photovoltaic penetration, and diesel generator use in July.
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Figure 8. Average daily battery state of charge (SOC) during a typical day, computed as the mean for
each hour across the year.

Figure 9 shows the average hourly generation of the diesel generator during the year.
Minimal activity is observed between 4:00 and 8:00 a.m., a period that coincides with
the peak battery charge resulting from morning photovoltaic generation. From 10:00 a.m.
onwards, diesel generation begins to increase progressively, reaching a sustained and high
level between 12:00 p.m. and 11:00 p.m. This pattern reflects strategic operation of the
generator as a backup source, activated mainly during hours of low irradiance and when
the storage system can no longer meet demand. This behavior demonstrates efficient
management of fossil resources, aimed at ensuring continuity of energy supply in the
absence of solar input. As shown in the figure, part of the battery charging occurs around
4:00 a.m., resulting from the intermittent operation of the diesel generator to maintain
a minimum SOC. While this strategy may not be the most energy-efficient, it ensures a
reliable electricity supply to critical loads, which is particularly important in remote medical
facilities where uninterrupted power is essential.
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Average Hourly Generation of the Diesel Generator
1.4

1.2 A

1.0 1

0.8

0.6

DG Generation (kWh)

0.4 4

0.2

0.0 T T T T

Hour of the Day

Figure 9. Average hourly energy output of the diesel generator throughout the day.

Figure 10 shows the average hourly energy balance for each month throughout the year.
In most months, a positive balance is observed between 5:00 a.m. and 8:00 a.m., coinciding
with the onset of photovoltaic generation and moderate demand. However, from 9:00 a.m.
to 1:00 p.m., a sharp decline occurs, reaching negative values, particularly in January, June,
July, and December. This trend suggests an overlap between peak demand and low solar
production, possibly due to adverse weather conditions or reduced seasonal irradiance.
During the afternoon and evening, the balance stabilizes at slightly negative or neutral
levels, which indicates greater reliance on the storage system or the diesel generator to meet
unmet demand. This behavior highlights the importance of implementing differentiated
backup and energy management strategies that are adapted to seasonal conditions.
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Figure 10. Technical analysis of the average hourly energy balance per month for the generator.

Table 7 summarizes the life cycle cost (LCC) results obtained in 10 independent
runs for each optimization algorithm. Both the genetic algorithm (GA) and the particle
swarm optimization (PSO) algorithm showed high stability in their results, with LCC
values fluctuating within a narrow range between USD 10,000 and USD 10,250. This low
dispersion demonstrates consistent and reproducible convergence under the same initial
conditions, reinforcing their reliability for energy optimization problems. On the other
hand, the ant colony optimization (ACO) algorithm presented significantly higher LCC
values, between USD 25,980 and USD 26,200, along with greater variability between runs.
This trend suggests a tendency of ACO to oversize certain components of the system,
prioritizing operational reliability even at the expense of economic efficiency.
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Table 7. LCC stability for GA, PSO, and ACO over 10 independent runs.
Execution 1 2 3 4 5 6 7 8 9 10
GA 10,245 10,220 10,230 10,210 10,225 10,240 10,215 10,235 10,250 10,200
PSO 10,210 10,200 10,215 10,220 10,205 10,225 10,230 10,210 10,200 10,220
ACO 26,010 26,200 26,150 26,175 26,080 26,090 26,100 26,250 26,120 26,130

Figure 11 shows the evolution of the average fitness value for the GA, PSO, and ACO
algorithms over 20 generations. The genetic algorithm (GA) exhibits the best convergence,
reaching the highest fitness values with the least variability, which shows greater efficiency
and stability in the search for optimal solutions. In the case of PSO, it also shows an
upward trend, although with greater dispersion in its intermediate results. In contrast,
ACO converges with lower values and exhibits greater fluctuations, showing a lower
exploration capacity under the evaluation conditions proposed.

Convergence Curves of the Algorithms
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Figure 11. Evolution of the average fitness value of GA, PSO, and ACO over generations.

Table 8 presents the average values of the Jaccard index obtained when comparing
the sets of optimal solutions generated in multiple independent runs of each algorithm.
The PSO algorithm achieved the highest average value (0.5148), followed by GA (0.4593),
while ACO obtained the lowest value (0.2926). These results indicate that PSO and GA
tend to converge towards similar solutions in different runs, showing greater stability
and consistency in their search processes. In contrast, ACO shows greater dispersion
between runs, implying less robustness to variations in initial conditions or randomness in
the process.

Table 8. Jaccard similarity index between optimal solutions generated by GA, PSO, and ACO algorithms.

ACO
0.292593

Algorithm GA PSO
0.459259 0.514815

Average Jaccard Index

Table 9 presents the results of the global sensitivity analysis performed using the
Morris method, expressed in terms of the absolute mean of the elementary effects (i) and
their dispersion (0)*. This approach allows the relative influence of each criterion on the
response of the GA optimization model to be identified. The results show that the criterion
with the greatest influence is Non-Supplied Energy (NSE), with a value of p* =0.92 and a
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dispersion o = 0.25, indicating a high sensitivity of the model to variations in this parameter.
This is followed by Life Cycle Cost (LCC), with p* =0.75 and o = 0.15, confirming its
relevance in the decision-making process for the optimal system. On the other hand, the
Renewable Share and Excess Energy criteria have significantly lower influence values
(1* = 0.34 and 0.45, respectively), with low dispersion, implying a more limited and stable
impact on the model’s response.

Table 9. Global sensitivity metrics (1 and o) per criterion®.

Criterion LCC ENS Renewable Share  Excess Energy
Mu (Mean Influence) * 0.75 0.92 0.34 0.45
Sigma (Dispersion) 0.15 0.25 0.1 0.12

Note: * i represents the mean of the elementary effects, and o represents their standard deviation, according to
the Morris method.

Sensitivity analysis using the Sobol method allows the variance of the model to be
broken down into contributions attributable to each criterion (Table 10), where the first-
order index (5i) represents the direct effect of a criterion on the output of the GA model,
while the total order index (STi) incorporates both direct effects and interactions with other
criteria. In this context, the results show that the ENS criterion has the greatest influence at
both the individual and total levels (Si = 0.81, STi = 0.89), followed by the LCC criterion
(51 =0.68, STi = 0.75). In contrast, the Renewable Share and Excess Energy criteria show
significantly lower sensitivity (Si < 0.45), implying a reduced influence and a limited degree
of interaction with other factors.

Table 10. First-order and total sensitivity indices using the Sobol method for the GA.

Criterion LCC ENS Renewable Share  Excess Energy
First Order (Si) 0.68 0.81 0.29 0.42
Total Order (STi) 0.75 0.89 0.33 0.5

To evaluate the impact of weighting schemes on the performance of the genetic
algorithm, three approaches were considered: environmental, technical, and economic.
As shown in Table 11, the technical scheme obtained the highest average fitness (0.78814),
the lowest standard deviation (0.01133), and the lowest average range (1.2), which shows
more consistent behavior and superior performance in the executions. In comparison, the
environmental scheme showed a lower average fitness (0.758961) and greater dispersion
in the results (average range of 2.7), while the economic scheme presented the greatest
variability, with a standard deviation of 0.020347, implying less stability in the results
obtained under this approach.

Table 11. Mean, standard deviation, and average range of the fitness value of the GA for each
weighting scheme.

Scheme Mean Fitness Standard Deviation Average Rank
Environmental 0.758961 0.01446 27
Technical 0.78814 0.01133 1.2
Economic 0.774454 0.020347 2.1

These findings are consistent with the results shown in Figure 12, which shows the
distribution of fitness values for each weighting scheme of the GA. The technical scheme
presents a compact box centered on high fitness values, demonstrating high stability and
efficiency in the results. Similarly, the economic scheme presents greater dispersion and
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the presence of extreme values, which implies less robustness in uncertain conditions.
Therefore, the technical scheme offers the best compromise between performance and
stability, being the most suitable approach for applications that require high reliability
in system optimization. The results obtained in this study reaffirm the effectiveness of
metaheuristic algorithms for the optimal design of hybrid microgrids in critical rural
environments. In particular, the GA showed superior performance compared to PSO and
ACO in terms of system efficiency, stability, and operational reliability. Through annual
simulations, GA managed to minimize LCC while maintaining a high renewable share
(64.04%) and zero ENS. This performance is consistent with the findings of [20], who
showed that metaheuristic algorithms can solve nonlinear and multivariable problems
with reduced computation times and stable solutions.

Fitness Distribution by Weighting Scheme
0.90
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0.85 A %

0.80 ~ fL

0.75 A
[ Environmental

[ Technical
[ Economic
T T

0.5 1.0 1.5 20 25 3.0 3.5
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Weighting Scheme

Figure 12. Distribution of fitness value for the GA under different weighting schemes.

Likewise, the consistency observed in independent GA runs, reflected in a low range
of variability and an average similarity index (Jaccard) of 0.86, implies a high capacity of
the algorithm to converge towards robust solutions even under stochastic conditions. This
behavior is in line with that reported by [21], where PSO achieved a significant improvement
in the dynamic stability of HESS. Furthermore, the good performance of GA compared to
ACO confirms previous observations by [23], who identified greater robustness and less
stress on energy components when using more adaptive and accurate algorithms.

In operational terms, the proposed optimal solution, which includes 20 photovoltaic
modules, a 40 kWh storage bank, and a 2 kW diesel generator, demonstrates that it is
possible to efficiently meet the energy demand of a rural medical center with a compact
and low-cost infrastructure. This result contributes directly to the goal of reducing diesel
dependence and associated logistics costs, as proposed in the studies by [6,8], where
well-sized hybrid systems were shown to improve energy resilience in isolated areas.

Furthermore, the model’s ability to ensure continuous supply by prioritizing critical
loads addresses one of the gaps identified in the literature, namely the lack of attention to
operational criticality in rural healthcare settings [10,11]. The inclusion of this approach
ensures the operation of essential medical equipment even in the event of failures or adverse
weather conditions, which represents a significant improvement over models focused solely
on general economic or technical criteria.

Finally, the superiority of the GA is supported by performance metrics such as LCC,
ENS, and renewable share, as well as its behavior under sensitivity analysis, where it
showed greater stability in the face of variations in the weighting criteria. This is essential
in high Andean contexts with high climate variability and budget constraints, confirming
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the need for adaptive, robust, and low-operating-cost solutions [12,24]. Therefore, the
findings reinforce the relevance of the metaheuristic approach to addressing energy design
challenges in rural areas of Peru and open new opportunities for the implementation of
sustainable hybrid systems in hard-to-reach medical centers.

4. Conclusions and Limitations
4.1. Limitations and Future Work

The model was applied using real climate and demand data from a specific high
Andean medical center. While its structure and optimization approach are generalizable, it
has not yet been tested using input data from other geographic locations or different user
profiles. Future work should focus on validating the robustness of the proposed configu-
ration under alternative climate scenarios, such as regions with higher wind potential or
different seasonal irradiation patterns. Additionally, the methodology could be extended
to other types of critical infrastructure, such as schools or community centers, by adapting
the demand profile accordingly.

4.2. Conclusions

This study developed an optimization model based on metaheuristic algorithms (GA,
PSO, and ACO) to design optimal configurations for hybrid renewable energy systems
in remote medical centers in the high Andes of Peru. Solutions were identified that
guarantee supply to critical loads under demanding climatic and economic conditions.
The main findings indicate that GA achieved the best technical-economic performance,
minimizing the system’s LCC to USD 10,213, maintaining a renewable share of 64.04%,
and ensuring zero ENS. In addition, GA demonstrated greater stability and consistency
between independent runs, with an average Jaccard index value of 0.86, indicating a high
similarity between the solutions obtained. Operational robustness is complemented by
low dispersion in the results, reflecting convergent and predictable behavior even under
stochastic conditions. In terms of sensitivity, GA showed a more controlled response
to variations in criterion weights, maintaining its performance within optimal margins
without abrupt deviations. Likewise, the evolution of generational fitness showed a
smooth and stable curve, without sudden oscillations, which demonstrates an efficient
convergence process towards high-quality solutions. Therefore, these results support the
use of metaheuristic algorithms as effective tools for energy planning in isolated rural
environments, especially when prioritizing the continuity of critical services such as health
centers. The proposed approach can be replicated to support investment decisions and the
design of sustainable energy systems in other regions with similar characteristics.

Author Contributions: Conceptualization, E.Z.-P.; methodology, E.Z.-P; software, E.Z.-P.; validation,
E.Z.-P, A.C.-S. and E.R.-A ; formal analysis, E.Z.-P.; investigation, E.Z.-P; resources, E.Z.-P.; data
curation, E.Z.-P.; writing—original draft preparation, E.Z.-P.; writing—review and editing, A.C.-S.
and E.R.-A.; visualization, E.Z.-P,; supervision, E.R.-A.; project administration, E.R.-A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data generated or analyzed during this study are included in
this published article. The data presented in this study are openly available in National Solar
Radjiation Database at https://nsrdb.nrel.gov/, JAM66S30 480-505 MR Datasheet at https://www.
jasolar.com /uploadfile /2022 /0928 /20220928044113690.pdf, FD3.2-2000 Wind Turbine Datasheet at
http:/ /www.huayaturbine.com/te_product_a/2008-04-09/22.chtml, [25-27].


https://nsrdb.nrel.gov/
https://www.jasolar.com/uploadfile/2022/0928/20220928044113690.pdf
https://www.jasolar.com/uploadfile/2022/0928/20220928044113690.pdf
http://www.huayaturbine.com/te_product_a/2008-04-09/22.chtml

Electronics 2025, 14, 3273 26 of 28

Acknowledgments: The authors would like to acknowledge the partial support provided by the
Department of Research, Innovation and Sustainability of the Universidad Privada del Norte (UPN)
during the development of this study.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SHER Hybrid Renewable Energy System
PV Photovoltaic

BESS  Battery Energy Storage System
ENS Energy Not Supplied

LCC Life Cycle Cost

GA Genetic Algorithm

PSO Particle Swarm Optimization
ACO  Ant Colony Optimization

SOC State of Charge

LCOE Levelized Cost of Energy

HESS  Hybrid Energy Storage System

LpP Linear Programming

MILP  Mixed-Integer Linear Programming
NLP Nonlinear Programming

DP Dynamic Programming
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