Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/145789
DC FieldValueLanguage
dc.contributor.authorRodríguez Almeida, Antonio Joséen_US
dc.contributor.authorBetancort Acosta, Carmeloen_US
dc.contributor.authorWägner, Anaen_US
dc.contributor.authorMarrero Callicó, Gustavoen_US
dc.contributor.authorFabelo, Himaren_US
dc.date.accessioned2025-08-27T12:50:29Z-
dc.date.available2025-08-27T12:50:29Z-
dc.date.issued2025en_US
dc.identifier.issn1424-8220en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/145789-
dc.description.abstractMore than 14% of the world's population suffered from diabetes mellitus in 2022. This metabolic condition is defined by increased blood glucose concentrations. Among the different types of diabetes, type 1 diabetes, caused by a lack of insulin secretion, is particularly challenging to treat. In this regard, automatic glucose level estimation implements Continuous Glucose Monitoring (CGM) devices, showing positive therapeutic outcomes. AI-based glucose prediction has commonly followed a deterministic approach, usually with a lack of interpretability. Therefore, these AI-based methods do not provide enough information in critical decision-making scenarios, like in the medical field. This work intends to provide accurate, interpretable, and personalized glucose prediction using the Temporal Fusion Transformer (TFT), and also includes an uncertainty estimation. The TFT was trained using two databases, an in-house-collected dataset and the OhioT1DM dataset, commonly used for glucose forecasting benchmarking. For both datasets, the set of input features to train the model was varied to assess their impact on model interpretability and prediction performance. Models were evaluated using common prediction metrics, diabetes-specific metrics, uncertainty estimation, and interpretability of the model, including feature importance and attention. The obtained results showed that TFT outperforms existing methods in terms of RMSE by at least 13% for both datasets.en_US
dc.languageengen_US
dc.relation.ispartofSensors (Switzerland)en_US
dc.sourceSensors [eISSN 1424-8220], v. 25 (15), (Julio 2025)en_US
dc.subject.otherGlucose Predictionen_US
dc.subject.otherTransformersen_US
dc.subject.otherArtificial Intelligenceen_US
dc.subject.otherExplainable Aien_US
dc.subject.otherDeep Learningen_US
dc.subject.otherPersonalized Medicineen_US
dc.subject.otherMhealthen_US
dc.titleIncorporating Uncertainty Estimation and Interpretability in Personalized Glucose Prediction Using the Temporal Fusion Transformeren_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/s25154647en_US
dc.identifier.isi001549708200001-
dc.identifier.eissn1424-8220-
dc.identifier.issue15-
dc.relation.volume25en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages27en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Rodriguez-Almeida, AJ-
dc.contributor.wosstandardWOS:Betancort, C-
dc.contributor.wosstandardWOS:Wägner, AM-
dc.contributor.wosstandardWOS:Callico, GM-
dc.contributor.wosstandardWOS:Fabelo, H-
dc.date.coverdateJulio 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,786
dc.description.jcr3,4
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,8
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.deptGIR IUMA: Diseño de Sistemas Electrónicos Integrados para el procesamiento de datos-
crisitem.author.deptIU de Microelectrónica Aplicada-
crisitem.author.orcid0000-0001-6358-5745-
crisitem.author.orcid0000-0002-7663-9308-
crisitem.author.orcid0000-0002-3784-5504-
crisitem.author.orcid0000-0002-9794-490X-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.parentorgIU de Microelectrónica Aplicada-
crisitem.author.fullNameRodríguez Almeida, Antonio José-
crisitem.author.fullNameBetancort Acosta, Carmelo-
crisitem.author.fullNameWägner, Anna Maria Claudia-
crisitem.author.fullNameMarrero Callicó, Gustavo Iván-
crisitem.author.fullNameFabelo Gómez, Himar Antonio-
Appears in Collections:Artículos
Adobe PDF (1,59 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.