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Abstract

More than 14% of the world’s population suffered from diabetes mellitus in 2022. This
metabolic condition is defined by increased blood glucose concentrations. Among the
different types of diabetes, type 1 diabetes, caused by a lack of insulin secretion, is particu-
larly challenging to treat. In this regard, automatic glucose level estimation implements
Continuous Glucose Monitoring (CGM) devices, showing positive therapeutic outcomes.
Al-based glucose prediction has commonly followed a deterministic approach, usually
with a lack of interpretability. Therefore, these Al-based methods do not provide enough
information in critical decision-making scenarios, like in the medical field. This work
intends to provide accurate, interpretable, and personalized glucose prediction using the
Temporal Fusion Transformer (TFT), and also includes an uncertainty estimation. The TFT
was trained using two databases, an in-house-collected dataset and the OhioT1DM dataset,
commonly used for glucose forecasting benchmarking. For both datasets, the set of input
features to train the model was varied to assess their impact on model interpretability
and prediction performance. Models were evaluated using common prediction metrics,
diabetes-specific metrics, uncertainty estimation, and interpretability of the model, includ-
ing feature importance and attention. The obtained results showed that TFT outperforms
existing methods in terms of RMSE by at least 13% for both datasets.

Keywords: glucose prediction; transformers; artificial intelligence; explainable Al; deep
learning; personalized medicine; mHealth

1. Introduction

In 2022, around 830 million people were affected by diabetes mellitus (DM), account-
ing for more than 14% of adults worldwide [1]. This chronic metabolic condition is defined
by increased blood glucose concentrations [2,3], which are associated with health complica-
tions, such as damage to the kidneys, blood vessels, eyes, or heart, negatively impacting the
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well-being of those affected [1]. There are two main types of DM: type 2 diabetes, produced
by increased resistance to insulin and the inability of the body to secrete enough insulin to
overcome such resistance, and type 1 diabetes (T1D), caused by an autoimmune, pancreatic
beta-cell destruction that leads to a complete lack of insulin production [1,4]. T1D treatment
is particularly challenging, since suboptimal, exogenous insulin administration is needed
to keep blood glucose within a safe range, avoiding hypo- and hyperglycemic events (low
and high blood glucose levels, respectively) [5,6]. Subsequently, glycemic control in people
with T1D demands a lifetime of exhaustive self-management. To achieve good glycemic
control and minimize the occurrence of harmful hyper- and hypoglycemic events, accurate
daily insulin administration is essential for people with T1D [1,7].

Among the available tools for T1D self-management, Continuous Glucose Monitoring
(CGM) has become a standard of care in many countries [8,9]. CGM devices consist of a
sensor inserted under the individual’s skin that tracks interstitial glucose concentrations
(in this work called CGM readings) every 1 to 15 min, depending on the sensor, and a
transmitter, which sends the information further to a monitor, watch, phone, or pump [10].
The use of CGM has helped to reduce the number of hypoglycemic events in people
with T1D [11], also enabling the incorporation of glucose prediction into insulin delivery
automation through so-called hybrid closed-loop systems. The latter consists of an insulin
pump, a CGM device with an incorporated transmitter, and a controller algorithm that
uses the information from the CGM to adjust insulin delivery rates [10]. In this work, CGM
data refers to all the information provided by the CGM sensor (i.e., CGM readings and
timestamps), whereas CGM readings refer only to the interstitial glucose values measured
by the device.

Glucose prediction is already included in the hybrid closed-loop systems to guide
automatic insulin delivery [12]. In this regard, artificial intelligence (Al)-based glucose
level forecasting has been an active area of research in recent years. A significant number
of studies are based on Convolutional Neural Networks (CNNs) [13-17] and Long Short-
Term Memories (LSTMs) [16,18]. However, although there are post hoc approaches to
interpret these models (e.g., Shapley Additive exPlanations (SHAP) [19]), these approaches
present two main drawbacks which are especially relevant in glucose prediction: the black-
box nature of their architecture and the lack of information inherent to the deterministic
prediction (i.e., predicting a single point rather than a range within which the prediction
could fall). The former is critical to understand the reasoning underlying an Al-based
decision that involves human lives [20]. The latter strongly limits the information provided
to the end-user (i.e., a person with T1D or a clinician), who is unaware of the uncertainty of
the provided prediction [21].

In data modeling, two types of uncertainties can be found. Firstly, aleatoric uncer-
tainty, which is inherent to the random nature of the studied phenomenon (in this case,
glucose level variations over time). This uncertainty cannot be reduced, but it can be
identified and estimated. Secondly, epistemic uncertainty (also known as model uncertainty)
is associated with the model’s lack of knowledge of the studied data. This uncertainty can
be reduced with effective model training and a suitable architecture [22]. In this regard,
Gal and Ghahramani achieved a significant milestone in 2016. They demonstrated that
the use of drop-out layers during the test phase in deep learning (DL) models enables
model (epistemic) uncertainty estimation. This technique was called Monte-Carlo Drop-
Out (MCDO) [23]. Nonetheless, the main disadvantage of this technique is the need to
execute the model a certain number of times to obtain the probability distribution, which
might be unfeasible depending on the application. This work represented a turning point
that led to an increased research interest in DL-based architectures targeting probabilistic
forecasting [21]. Various architectures have been employed to follow this approach in time
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series forecasting. As an example, DeepAR is an encoder—decoder LSTM-based architecture
that provides probabilistic forecasting by predicting a likelihood model (e.g., Gaussian
likelihood). It uses MCDO to sample from the obtained probability distribution. The
previous assumption of the modeled probability distribution is a limitation of this architec-
ture [24]. As a matter of fact, the Gaussian assumption when modeling glucose variations
over time is not effective [25]. In this sense, DeepPIPE introduces the interval prediction.
Unlike DeepAR, this model does not make any prior assumption of the output probability
distribution [24]. Similarly to DeepPIPE, the model presented in [26] employs quantile pre-
diction for distribution-agnostic probabilistic multi-horizon prediction. Finally, Generative
Adversarial Networks (GANSs) have also been employed in this regard, modeling arbitrary
probability distributions using only the generative part of this network [27].

The black-box nature intrinsic to DL architectures limits their implementation in sce-
narios where knowing the reasoning behind an automatic decision is mandatory. This is
especially critical in healthcare, and, specifically, in glucose forecasting, where Al-aided
guidance to avoid critical life-threatening glycemic levels should be understandable and in-
terpretable [28]. EXplainable AI (XAI) has recently emerged as a research area to overcome
this issue [29]. Aside from the direct benefits obtained from understandable AI models,
information enrichment provided by XAl is associated with an increased adherence to
mobile Health (mHealth) tools, whose continuous usage usually implies improved health
outcomes [20,30]. Focusing on interpretable time series forecasting, post hoc techniques,
fuzzy logic, and attention mechanisms are the most widely used methods [31]. Trans-
formers are based on attention mechanisms and have shown superior performance in the
sequence-to-sequence (seg-to-seq) paradigm (i.e., an input sequence produces an output
sequence) like Natural Language Processing (NLP) approaches [32], being the base of
models such as ChatGPT [33]. Since personalized glucose prediction can be considered a
seq-to-seq task, a transformer-based architecture has been employed in this work to tackle it
by also providing model interpretability and uncertainty estimation.

Nonetheless, the study by Zeng et al. demonstrated that the use of transformers for
time series forecasting does not always outperform simpler algorithms. Among other exper-
iments, they developed a linear model that outperforms most of the transformers studied
for time series forecasting, also proving that, when shuffling input data, performance was
not harmed. This suggested that transformers did not learn temporal dependencies [34].
However, the Temporal Fusion Transformer (TFT) [35], which includes LSTMs for local
temporal processing, was not assessed in the previous study. The TFT has demonstrated
an ability to identify temporal patterns within a wide variety of datasets, outperforming
classic autoregressive approaches, like ARIMA [36] or modern DL architectures, such
as DeepAR [24], setting the state of the art in interpretable, probabilistic forecasting. In
addition, TFT architecture allows us to process heterogeneous data, from the time series
itself, numerical variables like the day of the month, or categorical variables like subject
identifiers, among others [35]. The latter is especially relevant for this work, since it enables
personalized glucose prediction.

Zhu et al. [37] previously used the TFT for glucose prediction using CGM data. Al-
though they achieved positive results, some limitations were identified. Firstly, they did
not evaluate how varying input features influenced model performance, interpretability,
and uncertainty. In fact, they did not quantify model uncertainty in any way, nor the
interpretability of the model. Additionally, this work did not include a subject identifier as
an input feature, hindering a personalized approach in the prediction. Finally, the model
was tested with datasets that did not include more than 14 days of CGM readings in any
case, which does not include yearly-seasonality pattern changes.
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All these limitations found in Zhu et al.’s work (namely, an exhaustive study regarding
feature contributions in prediction performance, attention variations within the input
sequence and quantitative uncertainty estimation) were tackled by our study. In addition,
an incremental study (i.e., adding one variable at a time in the training stage of the TFT)
has been assessed to analyze changes in prediction performance and model behavior,
leveraging the in-built capabilities of this model. To the best of the authors’ knowledge,
this is the first time that such an exhaustive study has been carried out using the TFT
to target personalized glucose prediction. Thus, our work proposes the use of the TFT
for personalized and interpretable probabilistic interstitial glucose level forecasting. This
approach aims to provide the potential end-user (i.e., a person with T1D) with deeper
insights into the Al-based predictions on their short-term glucose level estimation, as well
as (a) how certain such an estimation is (including upper and lower probability distribution
bounds) and (b) why the model has made such a prediction. With this goal, different
experiments were carried out, varying the TFT input features using two datasets (including
a reference dataset for glucose forecasting evaluation), analyzing how the model behaved
in each case.

2. Materials and Methods

2.1. Datasets
2.1.1. WARIFA Dataset

The WARIFA dataset, named after the European Project from which the data were
collected [38], only contains CGM readings with their associated timestamps and an
anonymized subject’s ID. Variables such as insulin administration, carbohydrate intake,
or physical activity were not available for any of the subjects involved in this study. Data
were collected at the Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas
de Gran Canaria from 41 subjects with T1D using a sensor from the Abbott FreeStyle Libre
(Abbott Laboratories, Abbot Park, IL, USA) family. Participants were invited to participate
and were given oral and written information. All participants signed a written informed
consent form. The study was deemed exempt from assessment by the local ethics com-
mittee, since it did not fall within biomedical research regulations. An endocrinologist
extracted the CGM data in raw CSV (Comma-Separated Values) format from the Abbott
LibreView™ (Abbott Laboratories, Abbot Park, IL, USA) website.

To be able to evaluate the models using a whole year of data, only the subjects that
met the following inclusion criteria were considered, as performed in previous work [39]:

1.  Wearing the same CGM sensor for at least one year.
2. Wearing a CGM sensor with a sampling period of 15 min.

2.1.2. OhioT1DM Dataset

The OhioT1DM dataset [40] can be considered the reference for glucose forecast bench-
marking. Therefore, it has been incorporated in this study for comparison with existing
methods, and to evaluate how the TFT performs with two T1D-related datasets that include
different variables. This is a curated dataset that comprises two data collection campaigns
that took place in 2018 and 2020, containing eight weeks of data from 12 subjects with
T1D with associated, anonymized IDs. The OhioT1DM dataset, provided upon request
in XML (Extensible Markup Language) format, included subjects who wore an insulin
pump, and contained 20 variables for each subject, comprising CGM readings every five
minutes, physiological data, and self-reported data [40]. However, this study focused on
the variables considered more relevant for personalized glucose prediction: CGM readings,
ID, heart rate, carbohydrate intake, basal insulin rate (the rate at which insulin is infused into a
subject), bolus insulin (instantly delivered insulin dose, used before meals and for correc-
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tions), and their associated timestamps. It is worth noting that, in the anonymization process,
all dates associated with the CGM readings were shifted to a random time in the future but
keeping the times of the day and the days of the week, making the use of such temporal
data impossible as input features. The subjects included in the study wore Medtronic
530 G or 630 G insulin pumps and used Medtronic Enlite CGM sensors (Medtronic, Fridley,
MN, USA). Physiological data that included heart rate, skin temperature, sleep, steps and
acceleration were collected from a fitness band: Basis Peak (Basis Science Inc., San Francisco,
CA, USA) in the 2018 cohort, and Empatica Embrace (Empatica Inc., Boston, MA, USA) in
the 2020 cohort.

2.2. Data Preparation and Partition
2.2.1. WARIFA Dataset

After filtering out the subjects that did not meet the inclusion criteria, there were
29 different CGM sequences (1 per subject) with their associated timestamps containing
one year of glucose readings. These sequences were adapted to train the TFT following a
seq-to-seq approach, namely an input sequence that outputs an estimated future sequence
(in this case, a future sequence of prediction intervals). As performed in [39], all subjects’
sequences were swept into one-step intervals to generate the model input sequences,
including 96 samples, and output sequences, including 4 samples, representing a prediction
horizon (PH) of 60 min at a sampling period of 15 min. Although the nominal sampling
period of all sensors was 15 min, the actual period between samples could vary slightly
from this reference value. Thus, when the difference between two consecutive timestamps
surpassed 29:59 min (2 x sampling periods minus one second), it was considered a reading
interruption, and a sequence was not generated for such timestamps. The work in [39]
reported histograms of the intervals between consecutive readings for all subjects, which
justified that this threshold did not compromise temporal consistency while allowing the
generation of a sufficient number of samples. In this work, an interruption implied that
a new sequence was generated, and data imputation was not performed so models were
trained only with full CGM patterns. Once all subjects’ input and output sequences were
generated, they were concatenated in a subject-wise scheme to perform data partition. The
optimal input and output sequence lengths of the models were heuristically obtained in [39].
In addition, the same study demonstrated that the definition of the interruption allowed
a sufficient number of instances for this dataset, without allowing significant temporal
inconsistencies. For the sake of fair comparison, this work replicated this preprocessing.

The generated sequences, which comprised data from a whole year, were divided
into four trimesters. For all subjects, each trimester was randomly split into 60% for the
training set, 20% for the validation set, and 20% for the test set, following a stratified
approach ensuring that all seasons, days, and months were present on each partition
(Figure S1). Performing this for all subjects and concatenating all sequences constituted
the final training, validation, and test sets. Sequences that contained samples from two
different trimesters were excluded from the subsets to avoid including the same datapoints
in different sets of data (training, validation, or test). Although the number of samples that
contributed to the final sets varies for each subject depending on the number of reading
interruptions, this partition ensures a balanced representation of all seasons in all subsets
for all subjects. This guarantees that the model is trained, validated, and tested with data
from all seasons, likely capturing changes in glucose variation patterns associated with
particular events that occur during the year.
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2.2.2. OhioT1DM Dataset

Unlike the WARIFA dataset, the OhioT1DM dataset provides data from heterogeneous
sources. This implies that the timestamps between input variables (e.g., between a given
CGM reading and a carbohydrate intake) rarely match. Heart rate values were discarded
due to their unavailability in some of the subjects, so CGM timestamps were considered the
reference to generate a common time grid to be able to feed the TFT with features sampled
at slightly different time instants. The initial CGM timestamp was the first element of a
common time grid, whereas the last one was the last element of the common time grid. The
interval between consecutive timestamps in the common time grid was 5 min, since it was
the sampling period of the CGM sensors included in this dataset.

From here, the closest match between the timestamps from the CGM and the rest of the
input features was assigned to the common time grid (Figure S2). When the original CGM
timestamp did not properly fill the common time grid (i.e., for two consecutive timestamps,
the same closest match was found), it was considered an interruption. For the rest of the
variables, when a value was not read, it was set to zero in the corresponding timestamp in
the common time grid, except for the basal rate, whose value was kept until updated by
the immediate next timestamp. This generated a long sequence from which the input and
output sequences to train the TFT, following a seq-to-seq approach, were generated.

Regarding dataset partition, the train and test sets provided by the authors and
commonly used in the literature were employed. The authors only specified training and
test sets, so the training set was subdivided as training and validation in an 80-20 partition
scheme, ending up with 74,121 (65%), 18,530 (16%), and 21,020 (19%) samples for the
training, validation, and test subsets, respectively.

2.3. Temporal Fusion Transformer

The TFT is an encoder—decoder transformer-based model that was designed for multi-
horizon probabilistic forecasting, providing model interpretability. Rather than single-
point predictions, this model computes probabilistic predictions: it estimates prediction
intervals by adopting quantile regression for each time step. In other words, it predicts the
conditional quantiles of the target distribution [26,35] (i.e., in this case, a range within which
all possible future glucose values could fall). This is essential to enrich the information
provided to a subject to, for example, avoid a hypoglycemic episode. The TFT also enables
the combination of heterogeneous data to perform predictions: observed past inputs
(e.g., past CGM readings), exogenous time series that influence the future of the target
variable (e.g., heart rate), and static covariates (e.g., subject ID or medical metadata, such as
weight) [35].

TFT relies on attention mechanisms to enhance interpretability [35]. An attention
function maps a query and a set of key—value pairs to an output [32]. Intuitively, the query
can be seen as the input CGM sequence embedded with its additional covariates (subject
ID, heart rate, carbohydrate intake, etc.), and the key—value pairs as the possible values
that the output sequence can take, together with its likelihood. These key—value pairs,
obtained after training, give an idea about what the model is focusing on to obtain the final
prediction, enabling interpretability of the output. To accomplish this, TFT implements a
multi-head interpretable attention mechanism that shares weights within attention heads,
introducing additive aggregation within them. In addition to the aforementioned features
of the TFT, its most important components are listed and briefly explained below [35]:

(1) Gating mechanisms to adapt network complexity for a given dataset by skipping
unused components of the architecture (e.g., if a dataset does not contain static
covariates, the corresponding encoder will not be present in the final implementation
of the model). This provides flexibility to perform different experiments to analyze
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the impact of a given input feature on model performance without further changes in
the model.

(2) Variable selection networks to select the most relevant input features at each
time step.

(3) Static covariate encoders to condition temporal dynamics through the integration of
the static covariates.

(4) Temporal processing to learn long-term (through multi-head attention layers) and
short-term (through LSTM) temporal relationships.

2.4. Experiment Design

The design of the experiments presented in this work has taken into account the
capabilities of the TFT to provide model interpretability and in-built variable importance
estimation. Inspired by the ablation study performed in [35], the input variables to train
the TFT were added incrementally in subsequent experiments to compare the prediction
performance, input feature importance, and model uncertainty between the different cases.
For both datasets, the TFT trained solely with CGM readings was considered the baseline.
This incremental study is clinically meaningful since certain glucose level patterns might be
associated with a specific time of the day (e.g., at a given hour a subject always exercises),
day of the week (e.g., diet can vary slightly during the weekends), or the month (e.g.,
holiday period), having meaningful impacts on glycemic control [41,42]

Pursuing a personalized prediction, each subject was treated as an entity with its
associated covariates and inputs, as the TFT has been proven to effectively distinguish
between individual elements using this technique [35]. This was performed by treating
the ID as a categorical static covariate. Thus, for both datasets, the second experiment
consisted of adding the ID as an input variable, so the model associated the encoded value
as a subject with her/his associated CGM reading.

Since the WARIFA dataset only includes CGM readings and their timestamps, and to
maintain consistency between the experiments in both datasets, the temporal information
was added immediately after the ID. This information was extracted from the timestamps.
The hypothesis underlying the order of the addition of the temporal variables is that the
greater the time granularity (i.e., hour of the day and day of the week), the more valuable
the information provided to the model, although the month could be associated with
changes in glucose patterns related to a specific season. Once the temporal information
was included in the model, the T1D-related variables were incrementally added, though
this was only possible using the OhioT1DM dataset. The order of such variables was based
on the information provided to the model. Since the basal insulin rate was never zero, it
was the first feature to be added. Furthermore, a slightly higher number of carbohydrate
intake episodes was observed compared to the number of bolus insulin administrations.
Subsequently, bolus insulin was the last added variable, just after the carbohydrate intake.
Table 1 compares both datasets and summarizes the order in which the variables were
incrementally included as input in the TFT. Additionally, it outlines which variables were
available in each dataset, how those variables were included in the TFT, the sensor sampling
period, the number of involved subjects, and the number of experiments carried out
with each dataset. Given the noticeable differences between datasets regarding temporal
granularity, differences in diabetes-related variables and number of included subjects, the
evaluation and comparison of the obtained results could be valuable to gain insights into
which variables are more helpful to obtain a precise glucose prediction with low uncertainty
using the TFT model.

Table S1 shows the number of instances in each subset for the data partition for both
datasets. Notice that the number of available training instances in the WARIFA dataset
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is around 3.5 times larger than its analog for the OhioT1DM dataset. This difference may
limit model performance for the latter case, although more input features are available.
Test instances were used to evaluate the models with unseen samples not used during the
training phase.

Table 1. Comparison between WARIFA and OhioT1DM datasets, considering only the variables
selected to train and evaluate the TFT, following the order in which they were added, indicating also
how such variables were introduced in the TFT. The monitoring period, the CGM sensor sampling
period, the number of subjects included (), and the number of experiments carried out with each
dataset are also indicated. A tick symbol indicates that the variable was collected. A cross symbol
indicates that a variable was not available. The Variable Type column indicates how a specific variable
was introduced to the TFT.

Included Variable OhioT1DM WARIFA Variable Type

Time-varying real

CGM v v (input and target)

ID v v Static categorical

Hour v v Time-varying real

Day of the week v v Tlme-va.rymg
categorical

Day of the month X v Time-varying real

Month x v Time-ve}rying
categorical

Insulin basal rate v X Time-varying real

Carbohydrate intake v X Time-varying real

Bolus insulin v X Time-varying real

Monitoring period 2 weeks 1 year

CGM sensor sampling period 5 min 15 min

n 12 29

Total number of experiments: 7 6

2.5. Model Training

The experiments were carried out using the Pytorch Forecasting library 1.2 [43], which
works on Python 3.9 [44] and Pytorch 2.5.1 [45]. All experiments were executed on an
AMD Ryzen 5 3600 6-core processor (Advanced Micro Devices, Inc., Santa Clara, CA,
USA) and an NVIDIA GeForce RTX 4070 Ti GPU (NVIDIA Corporation, Santa Clara,
CA, USA). For consistency in the comparison with previous work using the WARIFA
dataset, the input sequence length was set to 96 samples, corresponding to one day of CGM
readings [39]. In the OhioT1DM dataset, this parameter was also intended to include one
day of data (288 samples), but it significantly reduced the number of training instances.
Hence, for consistency between experiments, this parameter was finally fixed to 96 samples,
corresponding to eight hours of CGM readings. The selected PH was 60 min, as it is
common in the literature and clinically relevant. This corresponds to 4 and 12 samples
in the predicted sequence for the WARIFA (sampling period = 15 min) and OhioT1DM
datasets (sampling period = 5 min), respectively. As performed in [35], the selected
prediction interval percentiles for each time step were 10th, 50th, and 90th. Therefore, the
predictive interval will ideally cover 80% of the most feasible future glucose values for each
predicted time step, including the average tendency (corresponding to the 50th percentile).
This is important in a context where extreme cases, namely hyper- and hypoglycemic
episodes, should be predicted accurately to properly assist subjects” decisions to prevent
health-threatening events.

After data partition, all data subsets were normalized using Z-score and then shuffled
to feed the TFT. The batch size was set to 512 using the WARIFA dataset, due to the
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large amounts of available instances, saving computational time and trying to avoid
overfitting. In the experiments with the OhioT1DM dataset, the batch size was fixed to 128
to compensate for the lower number of available instances. Hyperparameter optimization
was performed using Optuna [46]:

Number of attention heads.

Hidden size (common within all TFT DL layers).

Hidden size to process continuous variables.

Maximum gradient norm (i.e., the maximum value a gradient update can have).
Learning rate.

Drop-out rate.

The optimization process was performed using the Tree-structured Parzen Estimator
(TPE) algorithm [47,48]. The TPE algorithm is a Bayesian optimization method that fits
a Gaussian Mixture Model (GMM) to the set of parameters associated with the best case,
and another GMM to the remaining parameter values, selecting the values that maximize
the ratio between both GMMs. Since the search space of the TFT is large and continuous,
25 trials (i.e., different hyperparameter optimizations training the TFT from scratch) were
run for each experiment to find the best hyperparameter combination. Each trial runs
100 epochs. This is a highly time-consuming task, so, considering the number of exper-
iments run in this study, the median pruner [49] was employed to save computational
time by discarding unpromising trials. The median pruner uses the median stopping
rule: if the best intermediate result of the current trial is worse than the median of the
previous trials at the same point, the trial is interrupted [49]. Additionally, the minimum
number of trials before starting pruning was set to five. The search space for each hyper-
parameter was based on prior work [32,35], and is specified in Table S2. The TFT was
trained with the Adam optimizer to minimize the quantile loss [26], based on Equation
(1), which is summed across all outputs for all PHs (in this work, 10th, 50th, and 90th
percentiles), where y is the true value, jj stands for the predicted value, g represents a
certain quantile, and the (-); operator computes the maximum between 0 and *-’. The
code of these experiments is available in a public repository for reproducibility (available
at https:/ /github.com/antorguez95/TFT4GlucosePrediction, accessed on 13 June 2025).

QL. 9, 9)=q(y—y)++Q—q) @ —v)+ 1)

2.6. Evaluation Metrics
2.6.1. Deterministic Metrics

Classical regression metrics, namely, Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and Mean Absolute Percentage Error (MAPE) (Equation (S1), Equation (S2),
and Equation (53), respectively) were computed using the 50th predicted percentile (i.e.,
the median of the estimated predicted distribution) to enable comparisons with existing
methods. These metrics were evaluated using only the last sample, corresponding to the
largest PH (i.e., 60 min).

2.6.2. ISO-Based Metrics

Although deterministic metrics provide valuable information about model perfor-
mance, they are not specifically tailored to the diabetes-specific prediction problem. It has
been demonstrated that better regression metrics do not always imply better prediction
performance in the diabetes context [39]. Hence, two metrics based on the ISO 15197:2015
standard [50], which establishes the minimum requirements for glucose monitoring devices
to be considered clinically safe, have been assessed in this work:
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e  First, 95% of the measured (in this context, predicted) glucose values must be within
+15 mg/dL for blood glucose concentrations below 100 mg/dL. For values equal to
or greater than 100 mg/dL, the margin of error is fixed to £15% of the reference value.
The metric we call ISOZone represents the number of points that fall within this range.

e  Second, 99% of the measured (in this context, predicted) glucose values should fall
within zones A and B (considered clinically safe) of the Consensus Error Grid (CEG)
for T1D [50]. The metric we call ParkesAB indicates the number of points that meet
this requirement.

2.6.3. Uncertainty Metrics

To estimate model uncertainty in the predicted distribution, the normalized quantile
loss, described in Equation (2), was evaluated on the predicted percentiles (10th, 50th, and

90th), where () is the domain of the test samples, y; a test sample at time ¢, T the prediction
horizon, and QL the quantile loss described in Equation (1).

2y, ~ Y QL(yr, 9(q, t—T, T), q)

. o yteﬂ
q — Risk = ST
ytEQ =1 yt

2

This metric quantifies the accuracy of the quantile of the predictive distribution,
enabling the approximation of the uncertainty in the prediction [26,35]. The lower its value,
the less uncertainty in the predicted quantile.

2.6.4. Interpretability Evaluation

By leveraging the in-built interpretable capabilities of the TFT [35], it is possible to
estimate which input features and which time instants of the input sequence are more
relevant to perform a probabilistic prediction. Attention and feature importance were
compared between experiments to analyze how the model behaved when additional
features were used during training. In addition, an instance-wise evaluation was conducted
to qualitatively evaluate the uncertainty of random predictions, due to the large amount of
available test samples.

3. Experimental Results and Discussion
3.1. Prediction Performance and Uncertainty Estimation

Tables 2 and 3 show the deterministic (RMSE, MAE and MAPE), ISO-based (ParkesAB
and ISOZone), and uncertainty metrics (p10, p50, and p90) obtained after evaluating the
generated TFT models with the WARIFA and OhioT1DM test sets, respectively. Moreover,
for each model, the number of parameters was extracted to evaluate how the size of the
model varied when features were included as inputs.

Table 2. Deterministic metrics (PH = 60 min) and uncertainty metrics (i.e., g-risks) of all the experi-
ments carried out with the WARIFA dataset. g-risks are dimensionless. Results in bold indicate the
set of input features with the best performance for deterministic and uncertainty metrics.

Deterministic Metrics ISO-Based Metrics Uncertainty Metrics

Input TFT
Features RMSE MAE MAPE  ParkesAB  ISOZone p10 50 90 Parameters
(mg/dL)  (mg/dL) (%) (%) (%)
CGM reading 29.26 20.93 13.77 98.71 69.64 0.042 0.084 0.048 4,132,609
Prev. + ID 26.59 18.76 12.40 99.00 73.85 0.039 0.078 0.043 4,465,497

Prev. + Hour

23.24 16.06 10.64 99.30 79.30 0.036 0.069 0.037 4,907,208
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Table 2. Cont.
Deterministic Metrics ISO-Based Metrics Uncertainty Metrics
Input TFT
Features RMSE MAE MAPE  ParkesAB  ISOZomne 10 50 9% Parameters
(mg/dL) (mg/dL) (%) (%) (%) P P P

Prev. + Day of the week 23.32 15.88 10.47 99.32 79.72 0.036 0.069 0.040 5,076,316

Prev. + Day of the month 24.22 16.85 11.17 99.18 77.63 0.036 0.072 0.039 5,108,758

Prev. + Month 19.78 13.09 8.62 99.54 85.13 0.032 0.060 0.035 5,013,680

Prev.: variables included in the preceding experiment.

Table 3. Deterministic metrics (PH = 60 min) and uncertainty metrics (i.e., g-risks) of all the experi-
ments carried out with the OhioT1DM dataset. g-risks are dimensionless. Results in bold indicate the
set of input features with the best performance for deterministic and uncertainty metrics.

Deterministic Metrics ISO-Based Metrics Uncertainty Metrics
Input TFT
Features RMSE MAE MAPE  ParkesAB  ISOZone p10 p50 p90 Parameters
(mg/dL) (mg/dL) (%) (%) (%)
CGM reading 43.24 31.92 22.02 96.21 50.23 0.098 0119  0.101 4,840,380
Prev. + ID 44.33 32.85 22.93 95.87 49.09 0.097 0123  0.103 4,694,258
Prev. + Hour 42.80 31.19 21.62 96.00 51.76 0.095  0.118  0.100 5,271,167
Prev. + Day of the week 44.58 32.13 21.91 96.35 49.92 0.100  0.121 0.102 4,662,862
Prev. + Basal insulin rate 44.34 32.20 22.18 95.95 50.85 0.105 0.124 0.103 3,487,822
Prev. + Carbohydrates 41.66 30.27 20.91 96.56 52.79 0.098 0115  0.099 5,757,020
Prev. + Bolus insulin 39.67 29.29 19.93 97.26 53.15 0.096 0.112 0.097 4,777,105

Prev.: variables included in the preceding experiment.

For both datasets, a more accurate prediction of the average tendency (reflected by a
decrease in the deterministic metrics) generally implied less uncertainty in such predictions
(i.e., lower g-risks). This means that prediction accuracy improves as epistemic uncertainty
decreases, which is desirable.

3.1.1. Results of the WARIFA Dataset

Focusing on the results obtained with the WARIFA dataset (Table 2), the subject ID,
included as an exogenous input feature to enable personalized prediction, significantly
improved the prediction of the average tendency and decreased model uncertainty with
respect to the baseline model (only trained with CGM readings). Similarly, the addition of
the hour as input improved all metrics. However, the inclusion of the day of the month and
the day of the week did not show any improvements, slightly worsening all the metrics in the
latter case. Interestingly, the addition of the month as an input to the TFT showed the best
prediction performance and the lowest prediction uncertainty within all experiments. This
model decreased the baseline RMSE, MAE and MAPE by 32%, 37%, and 37%, respectively.
This means that the TFT trained with CGM readings, the subject ID, and temporal data (that
comprises hour, day of the week, day of the month, and the month of each reading) estimates
the average tendency of the predicted distribution significantly better than the rest of the
input feature combination. Equivalently, p10, p50 and p90 decreased by 24%, 29% and
27%, respectively. Hence, the predicted distribution of the best model is considerably more
accurate than the baseline, providing predictions with a lower degree of uncertainty. This
is crucial in the context of glucose prediction, where a wrong estimation of critical glucose
levels (i.e., hyper- and hypoglycemic values) could mislead a subject into wrong actions
that can end in health-threatening events. The fact that the inclusion of the month showed
the best results suggests that introducing more seasonality information to the model helped
the TFT to better learn the context to analyze CGM patterns depending on the day and the
month of the reading. This is further discussed in Section 3.3.1.
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Analyzing the diabetes-specific metrics, it is remarkable that, except for the baseline
model, the ParkesAB always reached or surpassed 99%, fulfilling one of the ISO require-
ments. Conversely, the criteria associated with the ISOZone metric were not fulfilled in any
case. Nonetheless, the model that included the month as an input feature presented the
highest value (85.13%), being close to the 95% required by the ISO standard. Considering
that only CGM readings and their timestamps have been used to train the TFT, this result
suggests that this approach could meet both ISO requirements by including additional
diabetes-related features like those present in the OhioT1DM dataset.

Finally, the addition of input features generally implied larger models. Nonetheless,
the best model, which also includes the month as input, is slightly lighter than its two
immediate predecessors within the experiments. This is mainly because, although more
input variables were present, the number of attention heads obtained after hyperparameter
optimization was lower (3 against 4 and 8). Considering that the TFT was trained using a
32-bit floating point, model sizes ranged from 15.76 MB to 19.49 MB. Specifically, the best
model would require 19.12 MB of storage, which is not critical in the context of mHealth
tools, usually executed on smartphones or in cloud services.

3.1.2. Results of the OhioT1DM Dataset

The test results obtained using the OhioT1DM datasets showed a general prediction
performance downgrade compared to the WARIFA dataset results (Table 3). This can be
partially explained by the differences between the datasets. First of all, although the input
sequence length is the same, sensors included in the OhioT1DM dataset have a sampling
period three times lower (i.e., higher sampling rate) than the WARIFA dataset. Hence,
OhioT1DM instances comprise 8 h of CGM data, compared to the 24 h of the WARIFA
instances, providing more granular information, but less mid-term context in the input
sequences. Additionally, the number of subjects included in the OhioT1DM dataset is
less than half that of the WARIFA dataset (12 against 29 subjects). This, together with the
fact that the monitoring period is also substantially shorter (i.e., the number of training
instances per subject is drastically lower, as presented in Table S1), might potentially limit
the ability of the TFT to recognize entities (i.e., subjects) enabled by the inclusion of the ID
as an input variable. Finally, the length of the predicted output sequence is 12 samples, i.e.,
three times more than in the WARIFA dataset. In this sense, sampling at larger rates and
predicting longer sequences inherently implies more noise, model uncertainty and error
accumulation in sensor measurement and model predictions [51]. This is reflected in the
g-risk computation, since it considers the whole output sequence regardless of its length.
Hence, higher values in the g-risks are expected.

Table 3 shows that neither ParkesAB (>99%) nor ISOZone (>95%) ISO requirements
were fulfilled. This means that the model trained with the OhioT1DM dataset is not close
to being considered reliable in the glucose prediction context, since it could lead to wrong
and dangerous actions regarding glycemic control. Furthermore, performance degradation
after the inclusion of the subject ID as a model input suggests that, due to the low number
of subjects included in this dataset, monitored only for two weeks, the TFT might not have
properly recognized subjects as independent entities. Regarding temporal information, the
inclusion of the hour as a numerical variable slightly improved the baseline (only using
CGM readings) in terms of prediction performance of the average tendency and model
uncertainty. Conversely, the addition of the day of the week downgraded the baseline. This,
together with the results shown in Table 2 with the WARIFA dataset, suggests that the day
of the week provides valuable context information to the model together with the month, but
not on its own.
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Analyzing the effects of the exogenous diabetes-specific variables, the inclusion of
the basal insulin rate, a continuous variable that keeps a constant value until updated
(normally after a few hours), also worsened baseline performance. On the contrary, the
models resulting from the inclusion of both carbohydrate intake and bolus insulin significantly
outperformed the rest of the models. Although their vectors are sparse (i.e., most of
their values are zero), the major influence of these variables on glucose dynamics, which is
clinically proven [52], was interpreted by the model, as further demonstrated in Section 3.3.2.
Except for the p10 metric, which is barely lower than in the model where only CGM readings,
ID, and hour are present (0.095 vs. 0.096), the model that includes bolus insulin notably
outperformed the rest, achieving a ParkesAB that almost reached the ISO-established
minimum (97.2% against 99.0%). Nonetheless, this improvement is mainly limited by the
short monitoring period and the low number of subjects involved in the OhioT1DM dataset.

In terms of model uncertainty, described by the g-risks, the best model nearly tripled
their analog in the WARIFA-trained model. Considering that the number of predicted
samples is also triple, the best models for both datasets can be considered similar in terms of
model uncertainty. In practice, this means that, although the average tendency (p50) is less
accurate (i.e., deterministic metrics are higher), the predicted distribution of training with
the two datasets is similarly reliable, both presenting low uncertainty. However, given the
fact that ISO-based metrics are far from the standard minimum requirements, the models
trained with the OhioT1DM dataset cannot be considered safe in the diabetes context.

Finally, more input features did not imply larger models, and more parameters did
not ensure better performance, especially using a small dataset like the OhioT1DM dataset.
The resulting model sizes were equivalent to those obtained with the models trained with
the WARIFA dataset, with the best one requiring 18.22 MB of memory storage.

3.2. Analysis of the Model Interpretability

The attention matrices provided by the TFT indicate where the model focused on
within the whole input sequence to perform a prediction. Although one attention matrix
is generated per predicted sample (four when training the TFT with the WARIFA dataset
and twelve when training with the OhioT1DM dataset), the attention did not significantly
vary between them. Hence, for simplicity, the attention corresponding to the first predicted
sample has been analyzed for each experiment. Figure 1 shows the attention within the
input sequence for all experiments (N = 96 for both datasets), highlighting the combination
of features previously described that showed the best prediction performance for each
dataset with a dashed line.

3.2.1. Model Interpretability with the WARIFA Dataset

Figure 1a draws the TFT’s attention to the model input sequence after training the TFT
with different sets of input features using the WARIFA dataset. Except for the best case
(which includes the month as input), the model mainly focuses on the (approximately) first
20 and last 10 samples, as shown by the peaks at the beginning and end of the attention
graph. When including only CGM readings and CGM readings with ID, this phenomenon is
more drastic. The first samples are around 6 times more relevant for the final prediction
than most of the remaining input sequence. This difference is alleviated when introducing
the day of the week and the day of the month. However, such differences are also noticeable,
since the attention at the beginning of the sequence nearly doubles its analog in the whole
central part. In general, attention significantly increases in the last 10 samples, except for
the best case. Intuitively, this might be expected, assuming that the most recent values are
the most relevant for extracting information for the prediction. The fact that two thirds
of the sequence is significantly less relevant for the prediction than the beginning and the
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end of the sequence suggests that the model is leveraging the full sequence containing
24 h of CGM readings in a significantly imbalanced way. The fact that the larger these
differences are in attention, the worse the prediction performance is in terms of prediction
accuracy and uncertainty (see Table 2) suggests that such an imbalance could be related to
performance loss.
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Day of the week L —— Day of the week B
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Figure 1. Attention over the input sequence (N = 96) for all experiments carried out with the
(a) WARIFA and (b) OhioT1DM datasets. Sample 0 corresponds to the first sample of the input
sequence (i.e., 24 and 8 h before the moment of the prediction for the WARIFA and OhioT1DM
datasets, respectively). Sample 95 represents the last data sample before the prediction (i.e., 15 and
5 min before the moment of the prediction for the WARIFA and T1DM Ohio datasets, respectively).
Attention corresponding to the best case is highlighted with a dashed line. (Basal: basal insulin rate;
Carbs: carbohydrate intake; Bolus: insulin bolus.).

This is more evident by analyzing the best case, when the month is included as an
input variable of the TFT. Prediction performance significantly outperforms the rest of
the cases (especially the first ones, where the attention varies more drastically), and the
attention curve is the smoothest one. The highest attention is approximately triple the
lowest one, but there are not drastic changes between the attention of neighboring input
samples like in the rest of the cases. Additionally, the samples with less associated attention
are the ones at the beginning of the input sequence, but their importance is not negligible
compared to the rest. Unlike the rest of the experiments, the TFT considers the whole
central part of the sequence relevant. However, attention slightly drops at the end, even
though an increase with respect to the rest of the sequence could be expected. Hence, the
best prediction performance is directly related to the most balanced attention within the
whole input sequence.

The results shown in Table 2 and the attention over the input sequence illustrated in
Figure 1a suggest that including the month as an input feature helped the TFT to learn a
broader context regarding CGM prediction, differentiating patterns that belong to a specific
season of the year.

This feature of the TFT has a potential clinical utility: physicians could create a person-
alized plan to avoid critical glycemic episodes based on such attention plots. Nonetheless,
current attention computation is global, not personalized. In addition, this attention corre-
sponds to the input of the sequence regardless of its timestamps. Thus, further research
is needed to study how this can be applied to clinical practice in an effective and secure
way. Nonetheless, despite the potential of interpretability features, these must be clinically
validated to ensure their safe use as a guide for endocrinologists or people with T1D. Addi-
tionally, over-reliance of the obtained results should be avoided with safeguards derived
from clinical or pilot studies.
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3.2.2. Model Interpretability with the OhioT1DM Dataset

Figure 1b illustrates the attention over the input sequence after training the TFT
with the different sets of input features in the OhioT1DM dataset. Although similar
attention patterns are observed, the differences between datasets are translated into certain
differences in the model attention. With the OhioT1DM dataset, an initial peak (more
attention paid to the beginning of the sequence) is observed in all experiments. This peak
is lower when the model is solely trained with CGM readings and with the introduction
of the day of the week (i.e., two of the worst models). Specifically, the latter model, which
presents the poorest prediction performance, is the one that focused the most on the last
samples. This suggests that focusing mainly on the most recent data does not ensure
good performance.

The aforementioned initial peak is especially exaggerated in the best model (i.e., the
one that introduces the bolus insulin), where the first sample presents a value around
10 times higher than most of the middle part of the sequence. This shows that, although
insulin bolus as input improved model performance, the context that comprises the full
sequence has not been properly learned, as evidenced by metrics reported in Table 3. This
might be related to the fact that the models are fed with only 8 h of data against the 24 h
sequence of the WARIFA dataset. Apart from this abrupt difference, the attention of the
best model presents the smoothest curve, showing a gradual increase at its end (i.e., more
recent values), as could be expected. Furthermore, even though attention curves of all
generated models increase at the end of the sequence, this change is especially abrupt in
some of the worst-performing models (when including ID and the day of the week). On the
contrary, the attention of the best three models (when hour, carbohydrate intake and insulin
bolus are introduced) presents a similar pattern: a peak at the beginning of the sequence,
balanced attention in its middle part, and increased attention at its end. The differences in
the attention values in the middle and end of the attention vector are mainly determined by
the initial peak (i.e., the attention associated with the first samples). Namely, larger peaks
“leave” less attention for the rest of the sequence. The observed attention pattern suggests
that the models present limitations in leveraging the information embedded in the whole
input sequence. In these experiments, a smooth balanced attention pattern, such as the
one depicted in Figure 1a for the best model of the WARIFA dataset, was not seen. This
suggests that more balanced attention within the input sequence might be associated with
better prediction performance.

3.3. Analysis of the Importance of the Features in the Model

To gain insights into the relevance of the input features in the predictions, the feature
importance within the different experiments training the TFT was assessed for the WARIFA
and OhioT1DM datasets, as shown in Figures 2 and 3, respectively. Notice that feature
importance may vary from the TFT encoder, which learns the context and data patterns,
and the TFT decoder, which generates the output sequence after having learned from the
input data. As with the attention, feature importance barely varies within PHs, so the
feature importances corresponding to the first predicted sample have been analyzed, being
representative of the whole model. Additionally, ID does not appear in this analysis, since
it is the only static covariate included in this study and its relevance cannot be compared
with time-varying features. In this comparison, the time index refers to the position of a
given sample within the input sequence with respect to the moment of the prediction,
whereas the relative time index refers to the time index of a given sample with respect to the
rest of the samples present in the input sequence. Furthermore, the variable CGM reading is
not present in the TFT decoder, since it is the target variable (i.e., the prediction itself).
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Figure 2. Feature importances expressed as percentages for all experiments involving training the TFT
with the WARIFA dataset. Experiments are sorted from left to right in order of execution. (a) Feature
importance in the TFT encoder. (b) Feature importance in the TFT decoder. Prev.: variables included
in the immediately preceding experiment.
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Figure 3. Feature importance expressed as percentages for all experiments involving training the
TFT with the OhioT1DM dataset. Experiments are sorted from left to right in order of execution.
(a) Feature importance in the TFT encoder. (b) Feature importance in the TFT decoder. Prev.: variables
included in the immediately preceding experiment.

3.3.1. Feature Importance in the WARIFA Dataset

Figure 2 shows the feature importance after training the TFT for both the encoder
(Figure 2a) and the decoder (Figure 2b) using the WARIFA dataset. It can be observed that
the CGM reading is always the most important feature in the TFT encoder except for the case
of the best model, where the month is introduced as an input feature. This was expected,
since CGM reading is the target variable. The importance of the time index and the relative
time index decreases in both the encoder and decoder with the inclusion of more input
features, yet their importance is generally never negligible.

Moreover, it can be observed that the importance of the most granular temporal infor-
mation (i.e., the hour) is higher when generating the output sequence (decoding) than when
encoding the information. This suggests that the TFT focuses on longer-term information
to encode the input data, and on shorter-term information to perform a prediction. This
is especially evident in the best case: the inclusion of the month, a variable that provides
information about long-term seasonality. Although its importance is negligible in the
decoder, its introduction produces an increase in the importance of the day of the month
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(which is the most important feature in the encoder), suggesting that it helps the model to
learn long-term context.

Conversely, the hour becomes the most important feature in the decoder, its importance
in the encoder being the lowest among all variables. This behavior supports the hypothesis
that the encoder focuses on the longer-term patterns and the decoder on the shorter ones. In
this line, the importance of the day of the month is higher in the encoder than in the decoder,
in the opposite way to the day of the week. Additionally, CGM reading and time indices have
similar importance in the encoder and decoder, while the relative time index is slightly more
important in the decoder. This phenomenon, together with the prediction performance
shown in Table 2, highlights the importance of introducing long-term information to offer
more accurate interstitial glucose prediction using the TFT.

3.3.2. Feature Importance in the OhioT1DM Dataset

Figure 3 illustrates the obtained feature importance during training the TFT for both
the encoder (Figure 3a) and the decoder (Figure 3b) using the OhioT1DM dataset. As
observed in the WARIFA experiments (except for the best case), the CGM reading is the
most important variable in the encoder for all experiments. Additionally, the time index
and the relative time index lost importance in favor of the successively added variables in
both the encoder and decoder. This was expected, since the hour and the day of the week
provide more accurate temporal information. In fact, the importance of the relative time
index is negligible in the best case (the model that includes the bolus insulin as input).

It is noticeable how the basal insulin rate and the carbohydrate intake do not have a
meaningful impact on the encoder by themselves, but their importance, especially that of
the carbohydrate intake variable, is increased after the inclusion of the bolus insulin, which
becomes the second most important feature in the encoder. Considering the results shown in
Table 3, this suggests that the prediction improvements are associated with the information
provided by carbohydrates and bolus variables that enable the TFT to better learn a diabetes-
specific context like the glucose dynamics.

Analyzing the feature importance in the decoder, the basal insulin rate and the carbohy-
drate intake inclusion (before adding the bolus insulin) had a high impact on the decoder.
However, only the latter implied a prediction performance improvement (Table 3). In this
line, the bolus insulin was again the second most important feature in the best model, after
the hour. Hence, the TFT focused significantly on the carbohydrate intake and bolus insulin to
learn the data dependencies and patterns, also important in the decoder to generate the
output sequence.

Furthermore, as with the WARIFA dataset, the short-term information, namely the
hour, gained importance in the decoder. This supports the hypothesis that short-term
information is more relevant in the decoder and long-term information (not present in this
dataset) in the encoder.

3.4. Uncertainty Qualitative Analysis

One of the main objectives of this work is to train a TFT that provides accurate
predictions with uncertainty estimation that will potentially help people with diabetes to
make decisions based on the Al-based information. Hence, apart from the global analysis
detailed in previous sections, a qualitative analysis of the prediction errors and their
associated uncertainty was carried out. For this, instance-wise predictions were generated
with the best model for each dataset, using their corresponding test sets, which were not
used for the training and validation of the TFT model. Figure 4 shows two representative
examples of the main findings of this analysis for both datasets, where the blue solid line
represents the input sequence and the output sequence used as the ground truth, the green
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solid line represents the average tendency (p50 of the predicted distribution), and the green
shaded area represents the uncertainty of the TFT prediction (the upper (p90) and lower
(p10) boundaries of the predicted distribution).
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Figure 4. Representative examples of predictions with low uncertainty and high uncertainty for
WARIFA (a), (b) and OhioT1DM datasets (c), (d), respectively. Predictions were generated with the
best TFT models for each dataset. The blue solid line represents the input sequence and the output
sequence used as the ground truth. The solid green line represents the average tendency of the
prediction distribution (p50), whereas the shaded green area comprises the area between the upper
and lower predicted quantiles (p90, and p10, respectively), representing uncertainty. The dashed
black line in index 0 represents the moment of the prediction. Predicted sequences are zoomed for
illustrative purposes.

It is desirable that predictions whose average tendency is far from the ground truth are
accompanied by higher uncertainty. This would mean that the model somehow recognizes
less predictable patterns and assigns them larger uncertainty. This is in line with the fact
that longer PHs and more drastic glycemic changes (i.e., larger prediction errors) imply
more uncertainty. In the application scenario, this means that a person with T1D will be
more cautious to make a decision based on the model output when a large, shaded area
is shown.

Although there were specific cases that did not align with the abovementioned pre-
diction error and uncertainty quantification compromise, such cases were significantly
less frequent with the TFT model trained with the WARIFA dataset. This observation is
consistent with the results shown in Tables 2 and 3, which evidence that the TFT model
generated using the WARIFA dataset provides more accurate predictions, also being more
reliable in a diabetes-specific context. Figure 4a shows that the average tendency of the
prediction distribution matches the ground truth. This prediction has a narrow shaded
area, meaning a tight predicted distribution that implies low uncertainty. Equivalently,
Figure 4b depicts a less accurate prediction, together with a broader prediction, which
means more uncertainty in the prediction. Both cases demonstrate an appropriate behavior
for the TFT model.

Conversely, the TFT model trained with the OhioT1DM dataset showed a significant
number of patterns that were not consistent between prediction accuracy and uncertainty
estimation. A representative case, especially relevant in the diabetes context, is illustrated
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in Figure 4c. A pronounced error between the prediction p50 and the ground truth can
be observed. However, the p10 and p90 bounds are very close, forming a narrow pre-
dicted distribution that suggests negligible uncertainty, which does not represent the real
phenomenon. Additionally, this error occurs in a critical glycemic range. The prediction
suggests, with a low degree of uncertainty, that a hyperglycemic event will arise within
the next hour (glucose level > 180 mg/dL). This estimation will lead to insulin admin-
istration to avoid this episode, potentially leading to dangerous severe hypoglycemia
(glucose level < 70 mg/dL). This example highlights the importance of correctly esti-
mating uncertainty, so people with diabetes are aware of which estimations are more or
less reliable. Figure 4d depicts the opposite case, where a predicted sequence that fairly
resembles the ground truth shows higher uncertainty than the previously analyzed pattern.
This shows that the model, in these specific cases (although this behavior was observed
regularly in the OhioT1DM dataset), is not able to detect which patterns are less or more
reliably predictable, being unsuitable for implementation in a real scenario.

3.5. Comparison with the State of the Art

To position this work within the state of the art in probabilistic glucose forecasting,
a comparison with relevant studies was performed. Unfortunately, only one study has
been conducted using the WARIFA dataset, based on the traditional deterministic approach
using a Stacked-LSTM [39], so comparison against methods that use this dataset following
a probabilistic approach was not possible. Regarding the OhioT1DM dataset, only studies
contextualized within the scope of probabilistic 60 min prediction were included. For a
fair comparison, studies that did not follow the data partition specified in the original
paper [40] were filtered out. Table 4 shows a comparison of the results, including RMSE
as the deterministic metric, the diabetes-specific figures used in this study, and the indica-
tion whether personalization in the prediction, interpretability analysis, and uncertainty
quantification were tackled.

Table 4. Comparison of this work against relevant studies of the state of the art in glucose forecasting.
The best case for each metric is indicated in bold font. * Computed using the whole predicted sequence.

WARIFA Dataset
Al-Based Model (11:1235) ParkesAB (%) ISOZone (%) Personalization Intigﬁ;asliaility Qﬂgﬁirft;i:,:gn
Stacked-LSTM [39] 38.44 97.77 56.09 Yes No No
Proposed TFT model 19.78 99.54 85.13 Yes Yes Yes
OhioT1DM dataset
TFT Zhu et al. [37] 32.3* n/a n/a No Yes No
GluNet Li et al. [13] 31.28 % n/a n/a No No No
Proposed TFT model  27.02 * (39.67) 97.26 53.15 Yes Yes Yes

* Computed using the full predicted sequence; n/a: not available.

The Stacked-LSTM implemented in [39], where the WARIFA dataset was used, fol-
lowed a deterministic approach and thus did not provide interpretability insights and
uncertainty quantification. Since this work followed a do-it-yourself approach, one model
was generated per included subject, providing personalization, whereas the proposed TFT
achieved that using a single model. The RMSE metric was reduced by ~48% with respect
to the previous work, whereas the ParkesAB and ISOZone metrics were improved by ~2%
and 51%, respectively. It is worth noting that although the ParkesAB increase was slight,
it allowed the TFT model to fulfill the ISO criteria associated with this metric, unlike the
Stacked-LSTM. Furthermore, the RMSE and ISOZone metric (which represents the most
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restrictive ISO criteria) obtained a high improvement with respect to the previous work,
evidencing the potential use of this technique for interstitial glucose forecasting based only
on CGM data.

Regarding the published studies based on the OhioT1DM dataset, the TFT used in
this study was previously employed by Zhu et al. [37]. However, the subject ID was
not included to personalize the prediction, and the uncertainty quantification of such
predictions was not assessed. Furthermore, although feature importance was evaluated,
it was only performed for the TFT encoder, and attention within the input sequence was
not analyzed, limiting model interpretability. Additionally, the reported RMSE included
the full sequence, instead of evaluating only the 12th sample (that corresponds to the
60-min PH). Thus, for comparison purposes, the RMSE of the best TFT was computed in
the same way, obtaining a value of 27.02 against the 32.3 (16% less) reported by Zhu et al.,
demonstrating that our proposed TFT model achieved better performance. Furthermore,
diabetes-specific metrics were not evaluated in [37]. Similarly, the GluNet developed by
Li et al. [13], which used a CNN to predict the average tendency and the lower and upper
bounds of the prediction, achieved a global 60 min RMSE of 31.28 using the full sequence
for the RMSE computation, also proving the superior performance of our TFT, which
showed an RMSE that was 13% lower. Additionally, no diabetes-specific metrics were
reported, and personalization, interpretability, and uncertainty quantification were not
present in the reported analysis.

Hence, based on this comparison, it can be stated that the proposed method not only
provides prediction performance comparable with the state-of-the-art models for proba-
bilistic glucose prediction models. It also provides a more clinical and diabetes-oriented
perspective that provides objective uncertainty quantification and model interpretability.
These promising results and the interpretable nature of this approach show that it has
greater potential than the rest of comparable studies to be implemented in, for exam-
ple, an mHealth tool. Nonetheless, clinical validation is required to move towards that
ultimate goal.

4. Current Limitations and Future Work
4.1. Dataset Harmonization for the Development of Al-Based Glucose Forecasting Models

This study has demonstrated that when using the TFT, a state-of-the-art model for
interpretable and probabilistic prediction [35], a significant difference in performance was
observed when modeling the same phenomenon using two different datasets. These
discrepancies are mainly explained by the differences between datasets illustrated in
Table 1: the number of included subjects, their monitoring time, the features included,
and the sampling rate (sensor-dependent). Although the incremental study proposed in
this work provides insight into the importance of a given set of variables in glucose level
forecasting, this approach does not quantify how important each variable is by itself. These
experiments show, for example, that the addition of the month helped the TFT to better
understand the context together with the day of the month. However, due to the duration
of the TFT’s fine tuning with our hardware setup (5 days on average) and the amount
of experiments required for such analysis (63 and 31 experiments with the OhioT1DM
and WARIFA datasets, respectively), it was not feasible to perform a sensitivity analysis
that could help us understand how important each variable is individually (experiments
would take around 470 days). Further experiments optimizing the hardware setup could
drastically decrease training times to enable this type of extended and detailed analysis.

The OhioT1DM dataset [40] has unequivocally enabled significant improvements in
the glucose forecasting research field during the last few years, especially in Al-based
approaches. However, some of the main findings of this work, like the key role that the
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variable month plays in encoding CGM-related features, highlight the need for increasing
the monitoring period while collecting CGM data to build robust predictive models. Indeed,
the performance gap between models, as well as the inconsistency between model behavior
when training with both datasets (e.g., key features in one dataset are not present in the
other; see Figures 2 and 3), evidences the need for standardized procedures for diabetes
dataset collection. Dataset harmonization would reduce the burden that heterogeneous data
preparation pipelines and discrepancies between features entail, allowing for consistency
in experiments and model comparison. It would increase the applicability of an approach
like the one presented in this study to broader populations (race, age, type of sensors,
etc.). Currently, this is not feasible due to the drastic dataset heterogeneity. Thus, dataset
harmonization would ultimately lead to a common framework to design more reliable
Al-based diabetes management tools, applicable to broader populations [53].

4.2. Open Questions in Al-Based Glucose Forecasting Input Data

As previously introduced, the comparison between the results obtained using both
datasets raises various questions regarding the input data requirements to effectively
provide an Al-based robust glucose forecasting algorithm: (a) What is the optimal input
window length for model generalization? (b) What is the minimum number of subjects for
reliable predictions? (c) Is there any trade-off between sampling rate and model accuracy?

Focusing on the last point, the TFT model based on the OhioT1DM dataset is fed
with one third of temporal information with respect to the WARIFA dataset (8 h against
24 h), and it outputs a sequence three times longer (12 against 4 samples). Predicting
the 4th sample will have, in principle, less associated error and uncertainty than the 12th
predicted sample. Intuitively, this scenario will lead to poorer performance. In [51], the
authors analyzed the impact of the sensor sampling rate in an Al-based fall detection
classification task, concluding that better classification results were achieved by applying
data down-sampling (which is equivalent to decreasing the sampling rate). Unfortunately,
no similar studies exist for the glucose forecasting task. Thus, a down-sampling of the
OhioT1DM dataset would be useful to gain insights into the impact of the sampling period,
and its associated levels of noise, on glucose prediction performance using the TFT.

Apart from adjustments such as a finer tuning of the TFT to enhance the training
process and achieve better prediction performance, the inclusion of minutes as an input
feature, or exploring different values of N, there is room for further analysis to enhance
glucose prediction. Firstly, the TFT allows missing data treatment [35]. On the one hand,
this would lead to the inclusion of a larger number of instances for training and would
generate a more suitable model for a real-world scenario, where reading interruptions often
occur. On the other hand, how this will impact prediction performance is something to
be studied. Then, alternatives to the common time grid proposed in this work could be
assessed. Moreover, the sensor model could be included as a categorical input variable
to train the model, as well as the subject’s identifier. Sensor measurement robustness
directly impacts the quality of glucose monitoring and the person’s ability to effectively
manage the disease [54]. Hence, based on how introducing the subject identifier improved
model performance, the model might identify the noise associated with each sensor (whose
design can impact the final model performance) by stratifying underlying noise similarly
to a specific sensor model. Related to this, variables that explain sensor degradation
due to aging (i.e., date when a subject started wearing a sensor), calibration process (as
a categorical variable), or other electronics-related aspects that have a direct impact on
CGM reliability could also help the model as inputs to enhance prediction performance.
Additionally, the inclusion of clinical variables or glycemic indices [55] (i.e., indices that
numerically describe parameters such as glycemic variability) could help the model to
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predict changes in patterns associated with a subject with certain characteristics (e.g., a slow
insulin pharmacodynamic [56]). Finally, the inclusion of the variable sex might allow the
model to better distinguish glucose patterns associated with, for example, the menstrual
cycle, which is a sex-dependent event [57].

Finally, a step further on this research would be a personalized assessment of the global
TFT (i.e., by analyzing metrics and patterns subject-wise, stratifying by the ID variable), as
performed in [39] for fully personalized models. This could enable personalized therapies
to enhance glycemic control, also allowing people with T1D to gain insights into their
glucose patterns, helping them manage their condition more efficiently. This enriched
information, combined with the use of XAI methods, could potentially enhance adherence
to the tool and, in the end, improve their health outcomes [20,30,58].

4.3. Assessing the Feasibility of the TFT for T1D Monitoring Applications

The TFT model sizes reported in Table 2 are not critical in the context of mHealth tools.
However, hardware optimizations might be necessary when implementing it onto a low-
end embedded system for in situ and portable data processing. After minor performance
improvements with respect to those reported in this work, it would be feasible to implement
the TFT model trained and validated with the WARIFA dataset in an mHealth application
or in a closed-loop system for automated insulin infusion. This would have a direct and
positive impact from different perspectives, compared to the implementation of a model
trained with the OhioT1DM dataset, where CGM data were sampled every 5 min:

e  Decreasing the sampling rate implies energy savings, which would prolong the lifes-
pan of the CGM sensor batteries. This is related to fewer sensor replacements and,
subsequently, fewer interruptions in the glucose level monitoring.

e Data generation would be three times lower for the same timeframe, so data storage
(and its associated energetic and economic costs [59]) would be drastically decreased.
Related to this, given the same input temporal window, generated models would
require less memory and fewer computational resources to execute them.

e  Achieving accurate predictions using only the CGM data would avoid the need
for harmonizing heterogeneous timestamps and would also decrease the noise and
reading interruptions associated with an increased number of sensor measurements.

Thus, if the abovementioned modifications in the TFT led to the achievement of an
ISOZone metric of 95% (i.e., clinically secure actions can be taken based on the provided
prediction), the proposed TFI-based prediction system might be tested to assess its clinical
utility, ensuring its safety in the diabetes-specific context. Additionally, an in-depth analysis
targeting the computational (i.e., economic) cost of model training and inference is necessary
to evaluate the feasibility of implementing this model at a large scale.

4.4. Diabetes-Specific Loss Function Development

The implementation of a context-specific loss function to enhance model prediction is a
commonly followed approach [60], also employed for glucose prediction [25,61], including
a loss function based on the ISO 15197:2015 standard [39]. However, most of these adapted
functions have been designed for deterministic prediction. To date, there is no ISO-adapted
loss function for probabilistic prediction. This might be related to the fact that probabilistic
loss functions tend to be more prone to mathematical instability than the deterministic
ones [62]. Thus, the use of an ISO-adapted quantile loss function could improve TFT
prediction performance, especially in terms of diabetes-specific metrics. Taking a step
further, although the ISO 15197:2015 is a fair approximation to tackle this task, recent
advancements in this field point to the need for a standard to specifically assess short-term
glucose prediction [50]. By adopting such a standard, Al developers and researchers will
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have a unified framework for benchmarking models, being able to evaluate if a model is
feasible to be implemented as an mHealth tool in a real-world scenario. This standard could
estimate the reliability of the prediction by analyzing the errors between the estimation
and the reference (that should be defined), considering the glucose concentration ranges, as
performed in the ISO 15197:2015.

5. Conclusions

In this work, the TFT, a state-of-the-art model for probabilistic prediction with un-
certainty estimation, has been trained with two diabetes datasets: the WARIFA dataset,
and the OhioT1DM dataset. To the best of the authors’ knowledge, this is the first study
that exhaustively analyzes attention and variable importance, and quantifies uncertainty
estimation in glucose forecasting based on CGM data using the TFT with two different
datasets. The conducted experiments consisted of incrementally adding, as model inputs,
the features available on each dataset, evaluating how the model behavior and prediction
performance changed by leveraging the in-built interpretable capabilities of the TFT.

The results obtained using the WARIFA dataset were significantly better than those
obtained after training the TFT with the OhioT1DM dataset. The best model achieved state-
of-the-art RMSE at a 60 min PH, a ParkesAB that surpassed the ISO 15197:2015 minimum
requirement, and reached 85% in the ISOZone metric (whose minimum is 95% to meet
the ISO criteria), being, to the best of the authors’ knowledge, the highest value reported
to date.

Comparing the best models after training the TFT with both datasets, it is observed
that the key features to enhance the prediction performance on each case (the month in the
WARIFA dataset, and the bolus insulin and carbohydrate intake in the OhioT1DM dataset)
were not present in their analogs. This observation evidences the need to find ways to
harmonize T1D datasets. This would lead to more efficient training, making it possible to
leverage models such as TFT, and moving towards accurate, interpretable and clinically
safe glucose predictors.

Finally, the methodology employed in this work followed an XAl-based approach
that relies on interpretability and model uncertainty estimation, providing insights into
how Al-based diabetes management systems work and why they provide accurate results.
This implies that the proposed TFT based on the WARIFA database could be potentially
implemented as an mHealth tool, providing clinically safe guidance to people with T1D. In
addition, the proposed methodology can be applied to similar tasks in the healthcare field
that are based on wearable monitoring, such as cardiovascular event tracking [63].
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