Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/144429
Campo DC Valoridioma
dc.contributor.authorTrynda, Janen_US
dc.contributor.authorMaczuga, Pawełen_US
dc.contributor.authorOliver, Alberten_US
dc.contributor.authorGarcía-Castillo, Luis Emilioen_US
dc.contributor.authorSchaefer, Roberten_US
dc.contributor.authorWoźniak, Maciejen_US
dc.date.accessioned2025-08-04T18:27:32Z-
dc.date.available2025-08-04T18:27:32Z-
dc.date.issued2025en_US
dc.identifier.issn1877-7503en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/144429-
dc.description.abstractDespite their flexibility and success in solving partial differential equations, Physics-Informed Neural Networks (PINNs) often suffer from convergence issues, even failing to converge, particularly in problems with steep gradients or localized features. Several remedies have been suggested to solve this problem, but one of the most promising is the dynamical adaptation of the collocation points. This paper explores a novel adaptive sampling method, of a stochastic nature, based on the Adaptive Mesh Refinement used in the Finite Element Method. The error estimates in our refinement algorithm are based on the value of the residual loss function. We tested our method against a variety of 1D and 2D benchmark problems that exhibit steep gradients near certain boundaries, with promising results.en_US
dc.languageengen_US
dc.relation.ispartofJournal Of Computational Scienceen_US
dc.sourceJournal of Computational Science [ISSN 1877-7503], v. 91(102684), (Octubre 2025)en_US
dc.subjectInvestigaciónen_US
dc.subject.otherAdvection-Dominated Problemsen_US
dc.subject.otherAlmost-Singular Poisson Problemsen_US
dc.subject.otherPhysics-Informed Neural Networksen_US
dc.subject.otherResidual-Based Adaptive Samplingen_US
dc.titleAn h-adaptive collocation method for Physics-Informed Neural Networksen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jocs.2025.102684en_US
dc.identifier.scopus105011699224-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-5576-5671-
dc.contributor.authorscopusid58419051000-
dc.contributor.authorscopusid57806951800-
dc.contributor.authorscopusid59228155200-
dc.contributor.authorscopusid35563049800-
dc.contributor.authorscopusid57193304764-
dc.contributor.authorscopusid26031779000-
dc.identifier.issue102684-
dc.relation.volume91en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.description.numberofpages14en_US
dc.utils.revisionen_US
dc.date.coverdateOctubre 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Modelización y Simulación Computacional-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Matemáticas-
crisitem.author.orcid0000-0002-3783-8670-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameOliver Serra, Albert-
Colección:Artículos
Adobe PDF (4,21 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.