
Journal of Computational Science 91 (2025) 102684

A
1
n

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

An h-adaptive collocation method for Physics-Informed Neural Networks
Jan Trynda a, Paweł Maczuga a, Albert Oliver-Serra b, Luis Emilio García-Castillo c,
Robert Schaefer a, Maciej Woźniak a ,∗

a AGH University of Kraków Institute of Computer Science al. A. Mickiewicza 30, 30-059 Kraków, Poland
b University Institute of Intelligent Systems and Numeric Applications in Engineering (SIANI), University of Las Palmas de Gran Canaria (ULPGC), Spain
c Department of Signal Theory and Communications, Universidad Carlos III de Madrid, 28911 Madrid, Spain

A R T I C L E I N F O

Keywords:
Physics-Informed Neural Networks
Residual-based adaptive sampling
Advection-dominated problems
Almost-singular Poisson problems

 A B S T R A C T

Despite their flexibility and success in solving partial differential equations, Physics-Informed Neural Networks
(PINNs) often suffer from convergence issues, even failing to converge, particularly in problems with steep
gradients or localized features. Several remedies have been suggested to solve this problem, but one of the
most promising is the dynamical adaptation of the collocation points. This paper explores a novel adaptive
sampling method, of a stochastic nature, based on the Adaptive Mesh Refinement used in the Finite Element
Method. The error estimates in our refinement algorithm are based on the value of the residual loss function.
We tested our method against a variety of 1D and 2D benchmark problems that exhibit steep gradients near
certain boundaries, with promising results.
1. Introduction

Physics-informed neural networks (PINNs) are a recent development
in the machine learning community that provide a viable alternative
to classical numerical methods to solve partial differential equations
(PDEs) [1–10]. Instead of using an extensive database, as in data-driven
deep learning approaches, PINNs use the problem’s physics (the set of
PDEs) as the neural network’s loss function. In the 1990s, the potential
of neural networks as universal function approximators to solve PDEs
was already recognized [11,12]. However, it is only now, with the vast
advances in computational capabilities, training algorithms [13] and
automatic differentiation methods [14–16], that PINNs have become
widely available.

Hence, the basic idea of PINNs is to train the neural network to
minimize the error regarding the PDE residual and the boundary and
initial conditions in a set of so-called collocation points.

Despite their success in a wide range of scientific applications,
PINNs sometimes fail to converge to the correct solution. Various
motives may explain this behavior. Some authors consider the problem
related to the imposition of initial and or boundary conditions, and
have modified the corresponding weights in the loss function [17,18]
or have strongly included the boundary conditions in the PDE formu-
lation [19]; others found that the problem lies in the stiffness of the
gradient flow dynamics [20,21], and other authors have associated it
with the location of the collocation points used during PINN train-
ing [22,23]. They note that the collocation points in the domain interior

∗ Corresponding author.
E-mail addresses: pmaczuga@agh.edu.pl (P. Maczuga), albert.oliver@ulpgc.es (A. Oliver-Serra), legcasti@ing.uc3m.es (L.E. García-Castillo),

schaefer@agh.edu.pl (R. Schaefer), macwozni@agh.edu.pl (M. Woźniak).

can only compute the PDE residual without considering the initial and
boundary conditions. Therefore, the solution is not unique at these
interior points, and the PINN may converge to a trivial solution. In this
paper, we attack the problem from this angle and propose an adaptive
sampling of collocation points to mitigate this issue

To improve the placement of collocation points in Physics-Informed
Neural Networks (PINNs), researchers have proposed non-uniform and
adaptive sampling strategies. In particular, in [7], the authors propose a
non-uniform distribution that clusters the collocation points in regions
where the solution exhibits steep gradients. Although effective, this
approach requires a priori knowledge about the behavior of the solution
and manual intervention to identify regions of interest. In contrast,
adaptive strategies automate this process by dynamically concentrating
the collocation points in areas where the loss function is relatively
large. For example, in [24], Lu et al. introduce the Residual-Based
Adaptive Refinement (RAR) technique, inspired by the Adaptive Mesh
Refinement (AMR) method widely used in the Finite Element Method
(FEM). An alternative adaptive strategy is presented in [25], where
the collocation points are distributed according to a probability den-
sity function (PDF) that is proportional to the residual of the partial
differential equation (PDE). A comparative study of these strategies,
along with proposed refinements, is conducted in the recent work of
Wu et al. [26].

Building on these adaptive approaches, in [27], the authors demon-
strate that PINN training may not converge to the true solution due to
https://doi.org/10.1016/j.jocs.2025.102684
Received 22 February 2025; Received in revised form 2 July 2025; Accepted 16 Ju
vailable online 25 July 2025
877-7503/© 2025 The Authors. Published by Elsevier B.V. This is an open access
c/4.0/).
ly 2025

article under the CC BY-NC license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/jocs
https://www.elsevier.com/locate/jocs
https://orcid.org/0000-0002-5576-5671
mailto:pmaczuga@agh.edu.pl
mailto:albert.oliver@ulpgc.es
mailto:legcasti@ing.uc3m.es
mailto:schaefer@agh.edu.pl
mailto:macwozni@agh.edu.pl
https://doi.org/10.1016/j.jocs.2025.102684
https://doi.org/10.1016/j.jocs.2025.102684
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

J. Trynda et al. Journal of Computational Science 91 (2025) 102684
the insufficient propagation of information from the boundary or initial
conditions into the interior of the domain. This phenomenon results in
narrow regions with large residuals surrounded by areas of otherwise
small errors. To mitigate this issue, the authors propose the Retain-
Resample-Release (R3) sampling algorithm. The R3 strategy incorporates
three key mechanisms: (i) Retaining collocation points located in high-
residual regions, (ii) Resampling a portion of points to ensure a uniform
distribution across the domain, and (iii) Releasing those points where
the residual has decreased and is no longer significant. For time-
dependent problems, the authors introduce a causal variant, termed
Causal R3, which prevents the progression of collocation points over
time until the information from preceding states has been adequately
propagated throughout the spatial domain.

This paper proposes a new adaptive strategy that adopts algorithms
inspired by Adaptive Mesh Refinement in the FEM community [28].
Although one of the features of PINNs is their meshless nature, we
propose starting with a coarse mesh of the domain and refining the
elements where the residual is larger than a certain tolerance. This
strategy conceptually resembles the idea of the R3 algorithm proposed
in [27]. The elements with a high residual will be refined between
training iterations (Retain), while the elements where the error de-
creases will not be refined again (Release). Additionally, the mesh
structure ensures a uniform distribution over the domain (Resample).
Our method combines two seemingly opposing strategies: a determin-
istic ℎ-FEM inspired algorithm that refines the mesh in high-residual
regions and a stochastic sampling approach that smooths out colloca-
tion points across the domain. We tested our method on a series of
1D and 2D problems that exhibit steep gradients near some of their
boundaries. To validate our approach, for each problem, we compared
the time and number of epochs required to train a Neural Network with
identical hyperparameters, using our adaptive sampling strategy and a
non-adaptive sampling strategy. To ensure reliable results, we trained
the Neural Network multiple times for each strategy and evaluated the
statistical measures. Specifically, we compare the mean and median
training times, as well as the mean and median number of epochs,
between the proposed strategy and a non-adaptive sampling strategy.
The code is provided by the authors.1

2. The idea of PINN

Let us define the class of forward PDE problems that allows us to
clearly pose the idea of the PINN method. This formulation can easily
be extended to other similar problems. We denote by 𝛺 ⊂ R𝑛 the
bounded set with a positive measure and the Lipschitz boundary 𝜕𝛺
(e.g., a composition of (𝑛 − 1)–dimensional smooth surfaces, without
infinitely sharp junctions), so that 𝛺 is a compact set.
Find 𝑢 ∈ 𝐶𝑚(𝛺);𝐴(𝑢(𝑥)) = 𝑓 (𝑥) ∀𝑥 ∈ 𝛺,𝐵(𝑢(𝑥)) = 𝑏(𝑥) ∀𝑥 ∈ 𝜕𝛺 (1)

where 𝐴 ∶ 𝐶𝑚(𝛺) → 𝐶(𝛺), 𝑓 ∈ 𝐶(𝛺), 𝐵 ∶ {𝐶𝑚(𝛺)|𝜕𝛺 → 𝐶(𝜕𝛺)},
𝑏 ∈ 𝐶(𝜕𝛺), and 𝑚 is large enough to satisfy the requirements of
the PDE operators 𝐴 and 𝐵. The spaces 𝐶𝑚(𝛺), 𝐶(𝛺), and 𝐶(𝜕𝛺) are
normed spaces equipped with the infinity norm denoted by ‖ ⋅‖∞,𝑚,𝛺 , ‖ ⋅
‖∞,𝛺 , and ‖ ⋅ ‖∞,𝜕𝛺, respectively. (see, e.g. Schwartz Laurent; Analyze
Mathematique, Hermann, Paris 1967 for details of the norm defini-
tions [29]).

The residual of the problem (1) is a composition of two functions:
𝐶𝑚(𝛺) ∋ 𝑣 → 𝑟𝑒𝑠𝛺(𝑣) = (𝐴(𝑣) − 𝑓) ∈ 𝐶(𝛺) (2)

𝐶𝑚(𝛺) ∋ 𝑣 → 𝑟𝑒𝑠𝜕𝛺(𝑣) = (𝐵(𝑣) − 𝑏) ∈ 𝐶(𝜕𝛺) (3)

Of course, if 𝑢 ∈ 𝐶𝑚(𝛺) is a solution to (1), then 𝑟𝑒𝑠𝛺(𝑢) = 0 and
𝑟𝑒𝑠𝜕𝛺(𝑢) = 0 are continuous functions in 𝛺 and 𝜕𝛺, respectively.

1 https://github.com/JanTry/PINN_HP.
2
Because 𝐶(𝛺) and 𝐶(𝜕𝛺) are subspaces of the Lebesgue spaces 𝐿2(𝛺),
and 𝐿2(𝜕𝛺), we can use their respective norms ‖𝑟𝑒𝑠𝛺(𝑤)‖2,𝛺, and
‖𝑟𝑒𝑠𝜕𝛺(𝑤)‖2,𝜕𝛺 to measure the error of the residual components (2), (3)
for any approximate solution 𝑤 ∈ 𝐶𝑚(𝛺) to (1). We refer to [30] for
details concerning function spaces, their topology, and PDEs.

Hypothesis 1. Let us assume that the operators 𝐴 and 𝐵 are con-
tinuous in adequate topologies, and the exact problem (1) possesses a
unique solution 𝑢 ∈ 𝐶𝑚(𝛺).

The above hypothesis is satisfied for almost all PDE-BV problems
well posed in the sense of Hadamard.

Now, we introduce the set of functions
𝐺 = {𝑔𝜃 ∶ 𝛺 → R, 𝜃 ∈ R𝑁𝐺} (4)

being the realizations of a single predefined layered ANN architecture
composed of a fixed number of layers. The input layer contains 𝑛
neurons, and the output layer contains a single neuron. All neurons are
equipped with the same activation function. The neurons are totally
connected between two consecutive layers.

The realizations 𝑔𝜃 are indexed by their learnable parameters
(weights, biases) denoted by 𝜃 ∈ R𝑁𝐺 , where 𝑁𝐺 is the number of such
parameters of the architecture. (see, e.g. [31] for ANN’s background).

Hypothesis 2. We assume that 𝐺 ⊂ 𝐶𝑚(𝛺), which allows us to
compute the operators 𝑟𝑒𝑠𝛺 , 𝑟𝑒𝑠𝜕𝛺 for all PINN functions 𝑔𝜃 ∈ 𝐺.

Hypothesis 3. The mapping 𝑇 ∶ 𝛩 ∋ 𝜃 → 𝑇 (𝜃) = 𝑔𝜃 ∈ 𝐺 returning the
PINN instance of the assumed architecture is continuous from topology
in R𝑁𝐺 to the topology in 𝐶𝑚(𝛺) imposed by the norm ‖ ⋅ ‖∞,𝑚,𝛺.

The above Hypotheses 2 and 3 are satisfied for a broad class of ANN
architectures in which the activation functions are at least 𝑚–times
continuously differentiable.

Hypothesis 4. Learnable parameters 𝜃 of all realizations belong to the
admissible compact set 𝛩 ⊂ R𝑁𝐺 .

Definition 2.1. The PINN approximation of (1) will be 𝑔𝜃̂ ∈ 𝐺 where
𝜃̂ ∈ 𝛩 that satisfies
𝜃̂ = arg min𝜃∈𝛩{‖𝑟𝑒𝑠𝛺(𝑔𝜃)‖22,𝛺 + ‖𝑟𝑒𝑠𝜕𝛺(𝑔𝜃)‖22,𝜕𝛺} (5)

Remark 1. Given Hypotheses 1–4 the problem (5) admits at least one
solution.

The above Remark 1 is a direct consequence of the Weierstrass
extreme value theorem (see, e.g., [29]) applied to the composition of
continuous functions (PINN instantiation mapping 𝑇 , PDE operators 𝐴
and 𝐵, norms ‖ ⋅ ‖2,𝛺, ‖ ⋅ ‖2,𝜕𝛺 and basic algebraic operations) that are
continuous in the compact set 𝛩.

Remark 2. The solution of the problem (5) respecting Hypotheses
1–4 will be unique if the exact solution 𝑢 belongs to 𝐺. Generally, the
number of solutions 𝜃̂ to (5) may be larger than one because 𝐺 is not
a convex set. Moreover 𝑇 (𝜃̂) is not necessarily the best approximation
of the exact solution 𝑢 by the ANN realization belonging to 𝐺, which
in the general case (omitting Hypothesis 4) does not exist (see [32] for
details).

The solution of the above PINN problem will be obtained by a
proper machine learning routine using loss functions, which represent
values of both norms appearing in (5).

The collocation points in 𝛺 and 𝜕𝛺 can be sampled using a specific
probability distribution. Because in the implementation only a finite
number of points from such sets is available (because of the restricted
accuracy of real number representation), multiple sampling of a single
point might occur.

https://github.com/JanTry/PINN_HP

J. Trynda et al. Journal of Computational Science 91 (2025) 102684
This motivates us to use the populations (multisets) of collocation
points that gather clones of elements from 𝛺 and 𝜕𝛺. The population
of the collocation points in 𝛺 will be represented by the pair 𝑃 =
(𝛺, 𝜂𝑃) where 𝜂𝑃 ∶ 𝛺 → N ∪ {0} so that 𝜂𝑃 (𝑥) returns the number of
clones of 𝑥 ∈ 𝛺 belonging to 𝑃 . The number of clones contained in a
multiset 𝑃 = (𝛺, 𝜂𝑃) can be calculated as follows

∑

𝑥∈𝑠𝑢𝑝𝑝(𝜂𝑃) 𝜂𝑃 (𝑥) while
𝑠𝑢𝑝𝑝(𝜂𝑃) = {𝑥 ∈ 𝛺; 𝜂𝑃 ≠ 0}.

Analogously 𝑃 = (𝜕𝛺, 𝜂𝑃), 𝜂𝑃 ∶ 𝜕𝛺 → N ∪ {0} will represent the
population of boundary collocation points.

Let us now introduce two families of populations that gather a finite
number of clones 𝜇𝛺 , 𝜇𝜕𝛺 of elements from 𝛺 and 𝜕𝛺 respectively.

𝑈𝛺 = {𝑃 = (𝛺, 𝜂𝑃); 𝜂𝑃 ∶ 𝛺 → Z+ ∪ {0};
∑

𝑥∈𝑠𝑢𝑝𝑝(𝜂𝑃)
𝜂𝑃 (𝑥) = 𝜇𝛺 < +∞},

(6)
𝑈𝜕𝛺 = {𝑃 = (𝜕𝛺, 𝜂𝑃); 𝜂𝑃 ∶ 𝜕𝛺 → Z+ ∪ {0};

∑

𝑥∈𝑠𝑢𝑝𝑝(𝜂𝑃)
𝜂𝑃 (𝑥) = 𝜇𝜕𝛺 < +∞}

(7)

For 𝑃 ∈ 𝑈𝛺, we set the following loss function:

𝛩 × 𝑈𝛺 ∋ (𝜃, 𝑃) → 𝑙𝛺(𝜃, 𝑃) =
∑

𝑥∈𝑠𝑢𝑝𝑝(𝜂𝑃)
𝜂𝑃 (𝑥)(𝑟𝑒𝑠𝛺(𝑔𝜃)(𝑥))2 ∈ R+, (8)

while for 𝑃 ∈ 𝑈𝜕𝛺 the loss function is

𝛩 × 𝑈𝜕𝛺 ∋ (𝜃, 𝑃) → 𝑙𝜕𝛺(𝜃, 𝑃) =
∑

𝑥∈𝑠𝑢𝑝𝑝(𝜂𝑃)
𝜂𝑃 (𝑥)(𝑟𝑒𝑠𝜕𝛺(𝑔𝜃)(𝑥))2 ∈ R+. (9)

Let us denote by 𝐿𝛺 = {𝑙𝛺(⋅, 𝑃), 𝑃 ∈ 𝑈𝛺}, 𝐿𝜕𝛺 = {𝑙𝜕𝛺(⋅, 𝑃), 𝑃 ∈ 𝑈𝜕𝛺} the
families of all loss functions associated with the populations of internal
and boundary points of fixed sizes 𝜇𝛺 and 𝜇𝜕𝛺, respectively. The quality
of the residual approximation of PINN naturally depends on the choice
of point populations used to construct the loss functions (8) and (9).

3. Learning PINN with a stochastic adaptation of collocation
points

We will use the polymorphic symbol meas(⋅) of the Lebesgue mea-
sure of the subsets of R𝑛 and R𝑛−1. In particular, meas(𝛺) denotes the
‘‘volume’’ of the exact solution’s domain and meas(𝜕𝛺) the ‘‘surface’’ of
its border.

Let us denote by 𝑀(𝛺) and 𝑀(𝜕𝛺) the spaces of probabilistic mea-
sures on 𝛺 and on 𝜕𝛺, respectively. Later, we will handle only measures
possessing density functions 𝜌𝛺 ∈ 𝐿2(𝛺;R+), 𝜌𝜕𝛺 ∈ 𝐿2(𝜕𝛺;R+).

The draft of the learning algorithm is shown in Listing 1.

1 BEGIN
2 Set 𝜇𝛺 and 𝜇𝜕𝛺 ;
3 Sample 𝑃1 ∈ 𝑈𝛺 using the p robab i l i t y d i s t r i b u t i o n from 𝑀(𝛺)

with the uniform dens i ty 𝜌𝛺 ≡ (meas(𝛺))−1 ∈ 𝐿2(𝛺) ;
4 Sample 𝑃2 ∈ 𝑈𝜕𝛺 using the p robab i l i t y d i s t r i b u t i o n from

𝑀(𝜕𝛺) with the uniform dens i ty 𝜌𝜕𝛺 ≡ (meas(𝜕𝛺))−1 ∈ 𝐿2(𝜕𝛺) ;
5 𝑡 = 0 ;
6 Learn PINN using l o s s funct ion 𝑙𝛺 (⋅, 𝑃1) +

𝑙𝜕𝛺 (⋅, 𝑃2) ge t t i ng f i n a l parameters 𝜃̂ ∈ 𝛩 ;
7 Compute r e s i dua l 𝑟𝑒𝑠𝛺 (𝑔𝜃̂) ;
8 Compute r e s i dua l 𝑟𝑒𝑠𝜕𝛺 (𝑔𝜃̂) ;
9 𝑃 𝑡

1 = 𝑃1 , 𝑃 𝑡
2 = 𝑃2 , 𝜌𝑡𝛺 = 𝜌𝛺 , 𝜌𝑡𝜕𝛺 = 𝜌𝜕𝛺 , 𝜃̂𝑡 = 𝜃̂ ;

10 WHILE NOT 𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑟𝑒𝑠𝛺 (𝑔𝜃̂𝑡), 𝑟𝑒𝑠𝜕𝛺 (𝑔𝜃̂𝑡))
11 𝑡 = 𝑡 + 1
12 Compute new dens i ty func t ions 𝜌𝛺 ∈ 𝐿2(𝛺), 𝜌𝜕𝛺 ∈ 𝐿2(𝜕𝛺)
13 Sample 𝑃1 ∈ 𝑈𝛺 using 𝜌𝛺 and 𝑃2 ∈ 𝑈𝜕𝛺 using 𝜌𝜕𝛺
14 Learn PINN using l o s s funct ion 𝑙𝛺 (⋅, 𝑃1) +

𝑙𝜕𝛺 (⋅, 𝑃2) ge t t i ng f i n a l parameters 𝜃̂ ∈ 𝛩 ;
15 Compute r e s i dua l 𝑟𝑒𝑠𝛺 (𝑔𝜃̂) ;
16 Compute r e s i dua l 𝑟𝑒𝑠𝜕𝛺 (𝑔𝜃̂) ;
17 𝑃 𝑡

1 = 𝑃1 , 𝑃 𝑡
2 = 𝑃2 , 𝜌𝑡𝛺 = 𝜌𝛺 , 𝜌𝑡𝜕𝛺 = 𝜌𝜕𝛺 , 𝜃̂𝑡 = 𝜃̂ ;

18 ENDWHILE
19 END

Listing 1 The algorithm of learning PINN.
3
The stopping condition of the entire learning procedure in Listing
1 (line 10) can be defined in multiple ways, depending on the con-
vergence criteria adopted and the practical limitations. A typical and
representative formulation, as employed in the numerical experiments
presented, involves verifying whether the global sum of squared resid-
ual norms falls below a prescribed threshold. This criterion ensures
a quantitatively controlled reduction in the approximation error. In
practice, the local error within each mesh element is estimated by
numerically approximating the integral of the residual norm using the
trapezoidal rule, followed by normalization with respect to the element
length. This yields an estimate of the mean residual norm in each
element, facilitating a localized assessment of convergence. The process
ends when all elements satisfy the designated error tolerance. More-
over, the algorithm must incorporate safeguards for scenarios in which
further refinement of the finite element mesh is no longer feasible—
either due to reaching a predefined local or global mesh density limit,
denoted by dense. In such cases, the adaptation procedure is halted
even if the residual-based criterion is not yet satisfied. The tolerance
values used in the experimental setup were 10−4 for one-dimensional
and 10−3 for two-dimensional simulations, respectively.

This strategy generates the sequence of tuples {(𝑃 𝑡
1, 𝑃

𝑡
2 𝜌

𝑡
𝛺 , 𝜌

𝑡
𝜕𝛺 , 𝜃̂

𝑡)},
𝑡 ∈ N ∪ {0}.

Next, we introduce algorithms for implementing pseudocode state-
ments n Listing 1, which leads to an efficient minimization of both
residual norms ‖𝑟𝑒𝑠𝛺(𝑔𝜃̂𝑡)‖2,𝛺, ‖𝑟𝑒𝑠𝜕𝛺(𝑔𝜃̂𝑡)‖2,𝜕𝛺 across consecutive iter-
ations 𝑡 ∈ N ∪ {0}.

4. Details of sampling measure adaptation strategy

4.1. ℎ-FEM based densities

First, we introduce a family of density functions from class 𝐿2(𝛺)
that will be used to sample the collocation points.

Let us consider the decomposition 𝑇coarse = {𝑒1,… , 𝑒𝑁coarse} of 𝛺
that satisfies the conventional conditions of the ℎ -FEM meshes in R𝑛.
This decomposition 𝑇coarse will be referred to as the starting coarse mesh.
Next, we introduce the decomposition 𝑇dense = {𝑒1,… , 𝑒𝑁dense}, which
is ‘‘nested’’ in 𝑇coarse. This means that each element of 𝑇coarse can be
decomposed into several elements of 𝑇dense. The 𝑇dense decomposition
might be reached by the ℎ-adaptation strategy specific for the type
of decomposition and dimension 𝑛 (e.g. the simplistic Voronoi decom-
position or the longest-edge refinement algorithm). The ℎ-adaptation
procedure produces a sequence of nested mesh decompositions starting
from 𝑇coarse and finishing at 𝑇dense. Each element of such a chain will
be nested in its predecessor and, of course, in 𝑇coarse.

The set of intermediate decompositions is partially ordered by the
ℎ-adaptive algorithm, e.g. 𝑇𝛼 preceded 𝑇𝛽 if 𝑇𝛽 can be obtained from
𝑇𝛼 by several steps of the ℎ-adaptation procedure. We denote 𝑇𝛼 ≤ 𝑇𝛽
if 𝑇𝛼 ‘‘is nested in’’ 𝑇𝛽 .

We also introduce a boundary 𝜕𝛺 decomposition 𝑇 𝑏, associated
with the 𝛺 decomposition 𝑇 , such that 𝑇 𝑏 = {𝑒𝑏 = 𝑒∩𝜕𝛺; 𝑒 ∈ 𝑇 ,meas(𝑒∩
𝜕𝛺) > 0}. We assume that the set of boundary decompositions associ-
ated with the nested family of domain decompositions is also partially
ordered by the ‘‘nested in’’ relation and 𝑇 𝑏𝑑𝑒𝑛𝑠𝑒 is nested in 𝑇 𝑏𝑐𝑜𝑎𝑟𝑠𝑒 and
all intermediate boundary decompositions, so 𝑇𝛼 ≤ 𝑇𝛽 ⇒ 𝑇 𝑏𝛼 ≤ 𝑇 𝑏𝛽 .
We refer to [33] for the necessary details concerning FE meshes, their
topology, and adaptation (refinement and coarsening) methods.

Let 𝑚𝑖 = meas(𝑒𝑖), 𝑒𝑖 ∈ 𝑇 , 𝑖 = 1,… , 𝑁𝑇 for some intermediate mesh
𝑇 .

We can now introduce the set of densities spanned by the vectors
𝑑𝑇 = (𝑑1,… , 𝑑𝑁𝑇

); 𝑑𝑖 ≥ 0, 𝑖 = 1,… , 𝑁𝑇 ,
∑

𝑖=1,…,𝑁𝑇

𝑚𝑖 𝑑𝑖 = 1 (10)

Each density under consideration has the form
𝜌 (𝑥) = 𝑑 if 𝑥 ∈ int(𝑒) , 𝑒 ∈ 𝑇 (11)
𝛺 𝑖 𝑖 𝑖

J. Trynda et al. Journal of Computational Science 91 (2025) 102684
Such functions are step-wise constant belonging to 𝐿2(𝛺) and well
defined for almost all 𝑥 ∈ 𝛺 except 𝑥 ∈ 𝜕𝛺 and 𝑥 ∈ 𝜕𝑒𝑖 ∈ 𝑇dense, 𝑖 =
1,… , 𝑁dense.

Analogously, having a boundary decomposition measures

(𝑚𝑏1,… , 𝑚𝑏𝑁𝑇 𝑏
); 𝑚𝑏𝑖 = meas(𝑒𝑏𝑖) , 𝑒𝑏𝑖 ∈ 𝑇 𝑏 (12)

and a vector of boundary probability densities

𝑑𝑏𝑇 𝑏 = (𝑑𝑏1,… , 𝑑𝑏𝑁𝑇 𝑏
); 𝑑𝑏𝑖 ≥ 0, 𝑖 = 1,… , 𝑁𝑇 𝑏 ,

∑

𝑖=1,…,𝑁𝑇 𝑏

𝑚𝑏𝑖 𝑑𝑏𝑖 = 1

(13)

we can define the boundary density

𝜌𝜕𝛺(𝑥) = 𝑑𝑏𝑖 if 𝑥 ∈ int(𝑒𝑏𝑖) , 𝑒𝑏𝑖 ∈ 𝑇 𝑏 (14)

For an arbitrary elements 𝑒 ∈ 𝑇 and 𝑒𝑏 ∈ 𝑇 𝑏 the spaces 𝐿2(𝑒), 𝐿2(𝑒𝑏)
with norms ‖ ⋅ ‖2,𝑒, ‖ ⋅ ‖2,𝑒𝑏 can be used to evaluate residual on 𝑒 ⊂ 𝛺
and 𝑒𝑏 ⊂ 𝜕𝛺.

4.2. Adapting densities

The starting density vector associated with 𝜌0𝛺 will be set to

𝑑𝑖 = (𝑚𝑖)−1, 𝑖 = 1,… , 𝑁dense , (15)

while 𝜌0𝜕𝛺 will be set to

𝑑𝑏𝑖 = (𝑚𝑏𝑖)−1, 𝑖 = 1,… , 𝑁𝑏dense . (16)

The consecutive densities 𝜌𝑡𝛺 , 𝜌𝑡𝜕𝛺 will be based on the successive adap-
tations of the initial decomposition 𝑇𝑐𝑜𝑎𝑟𝑠𝑒. The Listing 2 presents the
adaptation strategy.

1 BEGIN
2 𝑇 = 𝑇𝑐𝑜𝑎𝑟𝑠𝑒
3 compute ‖𝑟𝑒𝑠𝛺 (𝑔𝜃)|𝑒‖2,𝑒 , 𝑒 ∈ 𝑇
4 WHILE max{‖𝑟𝑒𝑠(𝑔𝜃)|𝑒‖2,𝑒 , 𝑒 ∈ 𝑇 } > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1
5 compute 𝑇 ′ ; 𝑇𝑑𝑒𝑛𝑠𝑒 ≥ 𝑇 ′ > 𝑇 by breaking a l l elements 𝑒 ∈

𝑇 f o r which ‖𝑟𝑒𝑠(𝑔𝜃)|𝑒‖2,𝑒 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1
6 𝑇 = 𝑇 ′

7 compute ‖𝑟𝑒𝑠𝛺 (𝑔𝜃)|𝑒‖2,𝑒 , 𝑒 ∈ 𝑇
8 ENDWHILE
9 compute 𝑇 𝑏
10 se t 𝜌𝛺 according to the formula (11) with 𝑑𝑖 =

‖𝑟𝑒𝑠𝛺 (𝑔𝜃)|𝑒𝑖‖2,𝑒𝑖
𝑚𝑖

, 𝑖 = 1,… , 𝑁𝑇

11 compute 𝜌𝜕𝛺 according to (14) with 𝑑𝑏𝑖 =
‖𝑟𝑒𝑠𝜕𝛺 (𝑔𝜃)|𝑒𝑏𝑖‖2,𝑒𝑏𝑖

𝑚𝑏𝑖
, 𝑖 = 1,… , 𝑁𝑇 𝑏

12 sca l e and normalize 𝜌𝛺 and 𝜌𝜕𝛺
13 END

Listing 2: The adaptation algorithm.

The parameter 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 in Listing 2 is a user-defined tolerance
used to guide mesh refinement. Any element with a normalized resi-
dual — computed via the trapezoidal rule and divided by element size
— exceeding 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 is marked for refinement. In the numerical
experiments, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 was set equal to the global stopping tolerances,
i.e., 10−4 for 1D, and 10−3 for 2D cases. If, in a given iteration,
the maximum residual is already below this threshold, no refinement
occurs, but this does not imply convergence. Final convergence is
determined by the global residual norm after training. Overfitting is
mitigated by residual normalization and the physics-driven nature of
the loss function, even in cases with limited quadrature resolution.

4.3. Sampling collocation points

The simple two-phase sampling algorithm of members 𝑃1 ∈ 𝑈𝛺
according to the probability distribution from 𝑀(𝛺) with a density 𝜌𝛺
given by the vector 𝑑 is presented in the Listing 3.
𝑇

4
1 BEGIN
2 𝑃1 = ∅
3 FOR 𝑒 ∈ 𝑇
4 𝑛𝑒 = 0
5 ENDFOR
6 FOR 𝑖 = 1, 𝜇𝛺
7 using rou le t t e , sample 𝑒 ∈ 𝑇 according to the p robab i l i t y

d i s t r i b u t i o n (𝑑1𝑚1 ,… , 𝑑𝑁𝑇 𝑚𝑁𝑇)
8 𝑛𝑒 = 𝑛𝑒 + 1
9 ENDFOR
10 FOR 𝑒 ∈ 𝑇
11 FOR 𝑖 = 1, 𝑛𝑒
12 𝑝𝑖 = sample point according to the uniform probab i l i t y

d i s t r i b u t i o n on 𝑒
13 𝑃1 = 𝑃1 ∪ {𝑝𝑖}
14 ENDFOR
15 ENDFOR
16 END

Listing 3: The algorithm for sampling collocation points.

Sampling 𝜇𝜕𝛺 clones to population 𝑃2 ∈ 𝑈𝜕𝛺 according the density
𝜌𝜕𝛺 will be performed by the analogous algorithm. Additionally:

• In statement 2, 𝑃1 denotes the empty multiset with the zero-
occurrence function.

• The sampling strategy consists of two phases. In the first, we
sample the number of points in each element of 𝑇 (statements
6–9). In the second phase, we determine the location of each point
within the given element.

• Sampling element 𝑒 (statement 7) does not remove this element
from the set 𝑇 .

• The possible method of sampling the assumed number of points
𝑑 with a uniform probability distribution over the element 𝑒 ∈ 𝑇
(being a part of 𝛺) or on 𝜕𝑒 ∩ 𝜕𝛺 (being a part of 𝜕𝛺) could be
performed by the algorithm presented in the Listing 4.

1 BEGIN
2 wrap the element 𝑒 ∈ 𝑇 in to the ‘ ‘ brick ’ ’ 𝐵 = [𝑎, 𝑏]𝑛

3 FOR 𝑘 = 1, 𝑑
4 sample the point 𝑥 from 𝐵 with the uniform

probab i l i t y d i s t r i b u t i o n on 𝐵
5 WHILE 𝑥 ∉ 𝑒
6 sample the point 𝑥 from 𝐵 with the uniform

probab i l i t y d i s t r i b u t i o n on 𝐵
7 ENDWHILE
8 ENDFOR

Listing 4: The algorithm of sampling points inside
element.

Because of the finite accuracy implementation of real numbers,
we should also allow sampling collocation points on the walls of the
elements in 𝑇 and in 𝑇 𝑏, even if it rarely happens.

This procedure, in the case of internal decomposition 𝑇 , starts with
an arbitrary and unambiguous numbering of all elements 𝑒 ∈ 𝑇 . Let
us consider sampling in an arbitrary element 𝑒 ∈ 𝑇 . If the collocation
point was sampled on any wall or vertex of 𝑒, then it will be removed
if it belongs to 𝜕𝛺 or it belongs to another 𝑒 ∈ 𝑇 with a larger number
than the ordering number of 𝑒.

The procedure for boundary elements is similar, except that we will
now only remove points sampled on the common wall with an element
that has a higher ordering number.

5. The problem of optimal collocation points selection

If we accept all the principles of the proposed stochastic algorithm
for PINN learning, we are able to formulate the associated problem of
optimal selection of collocation points:

J. Trynda et al. Journal of Computational Science 91 (2025) 102684
Fig. 1. Comparison of the exact solution and the PINN solution for benchmark B1.

Definition 5.1. Given 𝜇𝛺 , 𝜇𝜕𝛺 , 𝑇𝑐𝑜𝑎𝑟𝑠𝑒 find 𝑃1 ∈ 𝑈𝛺 , 𝑃2 ∈ 𝑈𝜕𝛺 so that
‖𝑟𝑒𝑠𝛺(𝑔𝜃̂)‖

2
2,𝛺 + ‖𝑟𝑒𝑠𝜕𝛺(𝑔𝜃̂)‖

2
2,𝜕𝛺 ≤ ‖𝑟𝑒𝑠𝛺(𝑔𝜃)‖22,𝛺 + ‖𝑟𝑒𝑠𝜕𝛺(𝑔𝜃)‖22,𝜕𝛺 (17)

where 𝑔𝜃̂ ∈ 𝐺 is learned by using loss function 𝑙𝛺(⋅, 𝑃1) + 𝑙𝜕𝛺(⋅, 𝑃2) and
𝑔𝜃 ∈ 𝐺 are learned by 𝑙𝛺(⋅, 𝑃1) + 𝑙𝜕𝛺(⋅, 𝑃2) ∀𝑃1 ∈ 𝑈𝛺 , 𝑃2 ∈ 𝑈𝜕𝛺, see (8),
(9).

Considering once more the implementation of all collocation points
as a finite number of vectors (because of a restricted accuracy real
number representation) contained in 𝛺 and 𝜕𝛺, we can also handle the
implementation of families of populations 𝑈𝛺 and 𝑈𝜕𝛺 as finite sets (see
e.g. [34]). The learning process mentioned in Definition 5.1 assigns the
unique value of the objective (sum of the squares of the norms of both
residuals) to each pair of populations. In consequence, this problem
admits at least one global minimizer as a result of searching in a finite
set.

6. Advantages of the proposed framework

The formal analysis of the proposed collocation point selection
shows the following advantages:

1. Can be applied to an arbitrary dimension 𝑛 of a computational
domain 𝛺 ⊂ R𝑛, assuming the existence of a proper type of FE
grid and its adaptation strategy producing the sequence of nested
meshes.

2. Is transparent with respect to the FE mesh adaptation policy,
assuming only the existence of a starting ‘‘coarse’’ mesh and a
final ‘‘dense’’ one, as well as the ‘‘is nested in’’ partial order of
intermediate meshes; that is, each intermediate mesh 𝑇 satisfies
𝑇𝑑𝑒𝑛𝑠𝑒 ≤ 𝑇 ≤ 𝑇𝑐𝑜𝑎𝑟𝑠𝑒, where ≤ denotes the ‘‘is nested in’’ relation.

3. As far as the sampling procedure in the first phase is ‘‘propor-
tional’’ to the residual, it allows scaling the density 𝜌𝛺 (also
dynamically), enlarging ‘‘selection pressure’’ towards elements
with higher residual.

4. The number of collocation points 𝜇𝛺 is independent of the num-
ber of elements and the training epoch, so it can be dynamically
changed.

5. The number of collocation points sampled on the boundary 𝜇𝜕𝛺
is independent of the number of points sampled in the interior
and can be dynamically controlled during iterations.

6. The probability distribution and the method of sampling collo-
cation points inside elements and on their boundaries can be
changed without changing the overall strategy of assigning the
number of points in each element or its boundary.
5
7. The existence of a 𝑇𝑑𝑒𝑛𝑠𝑒 nested in all possible meshes makes the
natural constraints for the mesh adaptation policy applied. On
the other hand, it allows for injective mapping of each density 𝜌𝛺
obtained for the intermediate mesh 𝑇 ≤ 𝑇𝑑𝑒𝑛𝑠𝑒 on the final mesh.
This feature can be utilized by modeling the sampling procedure
as the Markov process with a finite number of states and the later
asymptotic analysis.

8. It is easy to observe that if 𝑟𝑒𝑠𝛺(𝑔𝜃)(𝑥) ≠ 0 ∀𝑥 ∈ 𝛺 and
𝑟𝑒𝑠𝜕𝛺(𝑔𝜃)(𝑥) ≠ 0 ∀𝑥 ∈ 𝜕𝛺, ∀𝑔𝜃 ∈ 𝐺, then both densities 𝜌𝛺
and 𝜌𝜕𝛺 are strictly positive, so the arbitrary populations 𝑃1 ∈
𝑈𝛺 and 𝑃2 ∈ 𝑈𝜕𝛺 can be sampled. Because zero residual may
occur rarely (practically only once if the exact solution 𝑢 ∈
𝐺), then the populations satisfying (17) might be sampled in
one step with positive probability. So, the presented algorithm
falls into the class of asymptotically correct stochastic global
optimization strategies (see, e.g., [35]). As far as this feature
does not provide the effective stopping condition of the process
modifying the collocation points, we are sure that adjusting the
sampling densities 𝜌𝛺 and 𝜌𝜕𝛺 does not protect the sampling of
any minimizer with probability one.

7. The schedule of experimental verification

Two benchmarks are used to evaluate the performance and accuracy
of the proposed algorithms. They serve as a means of validation, allow-
ing us to assess the accuracy of the algorithm. In addition, benchmarks
test the robustness of algorithms against various difficulties, such as
steep gradients. They also provide a standardized way to compare
different algorithms. By applying these benchmarks, we gain insight
into the behavior of algorithms under various conditions.

The selected benchmarks are elliptic problems and diffusion-conve-
ction problems formulated abstractly across one-dimensional (1D) and
two-dimensional (2D) domains.

For the elliptic problems, the equation takes the form:
−∇ (𝑎(𝑥)∇𝑢(𝑥)) = 𝑓 (𝑥), 𝑥 ∈ 𝛺 ⊂ R𝑝, 𝑝 = {1, 2} (18)

All benchmarks use boundary conditions that are either pure Dirichlet
or a mix of Dirichlet and Neumann conditions. The problem involves
finding 𝑢 ∈ 𝐶2(𝛺) within a domain 𝛺 ⊂ R𝑝, where 𝑝 = 1, 2, that satisfies
the proper boundary conditions on 𝜕𝛺. Given a right-hand side (RHS)
function 𝑓 (𝑥) in 𝐶0(𝛺) and a coefficient 𝑎(𝑥) in 𝐶1(𝛺), the problem is
well-posed. The uniqueness and regularity of the solutions ensure that
the benchmarks are reliable for testing the performance of numerical
algorithms. In (18) where 𝛺 is a domain, 𝑢(𝑥) is the manufactured
solution, 𝑎(𝑥) is a tensor that characterizes the material properties, and
𝑓 (𝑥) is the right-hand side.

In elliptic problems, steep gradients near domain edges, particularly
in 2D cases, can lead to numerical instability. This case can be particu-
larly problematic for the standard PINN algorithm (without collocation
points adaptation), which may not detect such behavior and fail to
converge. In our benchmarks with manufactured solutions, we shift
the edge singularities slightly outside the domain boundaries, resulting
in a problem without singularities. The gradient near the boundary
remains very steep and significantly larger than within the domain,
posing challenges for numerical algorithms to accurately capture these
abrupt changes.

We select a 𝐶2 function with a singularity as a candidate for the
benchmark manufactured solution. Then, we choose a benchmark do-
main without singularities but with a boundary positioned close enough
to the singularity to produce a locally high but finite solution gradient.

The second benchmark, the advection–diffusion problem, is formu-
lated as follows:
𝜀𝛥𝑢(𝑥) − 𝑏(𝑥)∇𝑢(𝑥) = 𝑓 (𝑥), ∀𝑥 ∈ 𝛺 ⊂ R𝑝, 𝑝 = {1, 2} (19)

where 𝜀 ∈ R+ is the diffusion coefficient, 𝑏 ∈ 𝐶0(𝛺) represents the
advection vector, and 𝑓 ∈ 𝐶0(𝛺) is the source term.

J. Trynda et al. Journal of Computational Science 91 (2025) 102684
Fig. 2. Comparison of the number of epochs (left panel) and the computational time (right panel) required to reach given tolerance. 200 repeated runs were tested for PINN
without adaptation and with middle point adaptation on an RTX 4070 GPU for benchmark B1.
Table 1
Poison benchmarks details.
 𝛺 BC Manufactured solution
 B1 (0, 1) 𝑔𝐷 = (𝑥 + 𝜇)0.7 , 𝑥 = 0

𝑔𝑁 = 0.7
(𝑥 + 𝜇)0.3

, 𝑥 = 1

(𝑥 + 𝜇)0.7

 B2
(

0, 𝜋
2

)

𝑔𝐷 = tan(𝑥 − 𝜇), 𝑥 = 0

𝑔𝑁 = 1
cos2(𝑥 − 𝜇)

, 𝑥 = 𝜋
2

tan(𝑥 − 𝜇)

 B3 (0, 1)2 𝑔𝐷 = (𝑥 + 𝜇)0.7(𝑦 + 𝜇)0.7 , 𝑥 = 0 ∨ 𝑦 = 0;

𝑔𝑁 =
0.7((𝑥 + 𝜇) + (𝑦 + 𝜇))
((𝑥 + 𝜇)(𝑦 + 𝜇))0.3

, 𝑥 = 1 ∨ 𝑦 = 1

((𝑥 − 𝜇)(𝑦 − 𝜇))0.7

 B4
(

0, 𝜋
2

)2
𝑔𝐷 = tan(𝑥 − 𝜇) tan(𝑦 − 𝜇), 𝑥 = 0 ∨ 𝑦 = 0

𝑔𝑁 =
tan(𝑦 − 𝜇)
cos2(𝑥 − 𝜇)

+
tan(𝑥 − 𝜇)
cos2(𝑦 − 𝜇)

, 𝑥 = 𝜋
2
∨𝑦 = 𝜋

2

tan(𝑥 + 𝜇) tan(𝑦 + 𝜇)
Several difficulties arise when solving these benchmark problems,
particularly for PINN algorithms.

In this problem, the solution exhibits steep gradients for small 𝜀,
making it challenging to capture the boundary layer without crashing.

7.1. Metrics

We employ a variety of metrics to assess the quality of algorithmic
performance, appropriate for the stochastic nature of the algorithm.
Since each run yields different performance results, multiple executions
are necessary to obtain reliable measures.

The primary metrics we focus on are the average and median
training time. They are critical in determining whether the algorithm
performs statistically better across runs. When improvements are ob-
served in both metrics, it can be inferred that the algorithm exhibits
superior performance.

In addition to time-based metrics, we evaluated the average error
in the best population of collocation points obtained during the run.
We also analyze the regression of the 𝐿2(𝛺) error during the run and
the spatial error distribution across the runs, which provides insights
into the stability and robustness of the algorithm’s performance. These
error-based measurements allow us to better understand the accu-
racy and reliability of the algorithm beyond just its speed. Although
these measurements are briefly formulated, the exact formulas will be
explained later.

7.2. Benchmarks

We selected a set of benchmarks to rigorously evaluate the algo-
rithm’s performance, each with known analytical solutions, to provide
a reliable basis for validation.

The Poisson equation with a manufactured solution allows us to
test the algorithm’s ability to accurately reproduce predefined behavior,
6
while the advection–diffusion equation introduces complexity through
coupled transport and diffusion processes. These equations are widely
used in numerical analysis, making them well-suited for testing the
capabilities of different approaches. The details of the benchmark
problems B1-B4 are described in Table 1.

For each benchmark, we train a Physics-Informed Neural Network
(PINN) with the same hyperparameters, using both the proposed adap-
tive sampling and a non-adaptive sampling algorithm. Then, the perfor-
mance is evaluated using various metrics. This approach ensures a com-
prehensive assessment of the algorithms’ accuracy and computational
efficiency. We analyze all the metrics described in 7.1.

Let us define a set of manufactured solutions for both the 1D and
2D domains. These solutions provide known analytical forms, allowing
the precise validation of the numerical results.

Problems B1, and B3 are designed to evaluate how well the algo-
rithm can handle power-law behaviors with fractional exponents. The
𝜇 controls the steepness of the solution near the edge of the domain,
forcing the algorithm to capture this variation accurately.

The benchmarks B2, and B4 are another type of difficult non-
polynomial RHS. The solution has a steep gradient as 𝜇 → 0, intro-
ducing significant challenges to the algorithm, especially in capturing
the behavior near the edge of the domain.

8. Benchmark results

We present an evaluation of our proposed numerical method for
benchmarks B1-B4 and BA, which were defined in the previous section.
A series of numerical experiments compared PINN with the adaptation
of the initial guiding mesh 𝑇coarse (Section 4.3) and without adaptation.
Each experiment consists of repeatedly solving the benchmark problem,
both with and without adaptation. We then perform a statistical analy-
sis of the resulting metrics. We performed the experiments on a Linux
workstation equipped with an RTX 4070 GPU with 8 GB of GPU VRAM,

J. Trynda et al. Journal of Computational Science 91 (2025) 102684
Fig. 3. Comparison of error for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B1. Computations were done on RTX 4070 GPU.
Fig. 4. Comparison of convergence for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B1. Computations were done on RTX 4070 GPU.
Fig. 5. Comparison of the exact solution and the PINN solution for benchmark B2.

AMD Ryzen 5 7600X CPU, 32 GB DDR5 6000 MHz CL36 RAM, running
Ubuntu 20.04 Linux, and Python 3.10.

8.1. 1D Poison equation with manufactured solution of benchmark B1

We performed each experiment 50 times, both with and without
adaptation, using a tolerance of 10−4 and running 1000 epochs per
iteration, with a maximum of 1000 iterations per run. Both algorithms
were tested for 𝜇 = 0.03, and 200 collocation points.

Fig. 1 illustrates the comparison between an exemplary PINN solu-
tion and the exact solution.
7
Table 2
Average and median values for the number of epochs and the computational time for
training PINN with and without adaptation, for benchmark B1.
 Number of epochs Computational time
 Average Median Average Median
 No adaptation 468723 450000 959.72 s 921.20 s
 Adaptation 336780 318500 734.78 s 678.99 s

The results indicate that the average number of epochs required
for training without adaptation was 468 723, whereas, with adaptation,
this was reduced to 336 780. Similarly, the median number of epochs
decreased from 450 000 without adaptation to 318 500 with adapta-
tion. In terms of computational time, the average training duration
dropped from 959.72 s to 734.78 s with adaptation, while the median
time decreased from 921.20 s to 678.99 s. A summary of these findings is
provided in Table 2, and Figs. 2(a) and 2(b) offer detailed comparisons
of the number of epochs and training times.

Additionally, we analyze representative results for error and resid-
ual convergence in both versions of PINN. For these comparisons, we
selected runs with exactly 8000 epochs. Fig. 3 shows the error for both
algorithms. Fig. 4 illustrates the residual behavior, where the adapted
method shows noticeable spikes in the loss function due to mesh regen-
eration. Fig. 3 reflects the fixed-budget behavior of the loss function,
rather than the actual stopping point of the training. In practice, the
loss often meets the target threshold much earlier, particularly in the
adaptive case, and the method terminates accordingly.

8.2. 1D Poison equation with manufactured solution of benchmark B2

We performed each experiment 100 times, both with and without
adaptation, using a tolerance of 10−4 and running 1000 epochs per
iteration, with a maximum of 1000 iterations per run. Both algorithms
were tested for 𝜇 = 0.3 with 200 collocation points.

J. Trynda et al. Journal of Computational Science 91 (2025) 102684
Fig. 6. Comparison of the number of epochs (left panel) and the computational time (right panel) required to reach given tolerance. 200 repeated runs were tested for PINN
without adaptation and with middle point adaptation on an RTX 4070 GPU for benchmark B2.
Fig. 7. Comparison of error for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B2. Computations were done on RTX 4070 GPU.
Table 3
Average and median values for the number of epochs and the computational time for
training PINN with and without adaptation, for benchmark B2.
 Number of epochs Computational time
 Avergae Median Average Median
 No adaptation 241030 158000 517.35 s 342.93 s
 Adaptation 152640 116500 368.03 s 280.70 s

Fig. 5 illustrates the comparison between an exemplary PINN solu-
tion and the exact solution.

The results indicate that the average number of epochs required
for training without adaptation was 241 030, whereas, with adaptation,
this was reduced to 152 640. Similarly, the median number of epochs
decreased from 158 000 without adaptation to 116 500 with adapta-
tion. In terms of computational time, the average training duration
dropped from 517.35 s to 368.03 s with adaptation, while the median
time decreased from 342.93 s to 280.70 s. A summary of these findings is
provided in Table 3, and Figs. 6(a) and 6(b) offer detailed comparisons
of the number of epochs and training times.

Additionally, we analyze representative results for error and resid-
ual convergence in both versions of PINN. For these comparisons, we
selected runs with exactly 8000 epochs. Fig. 7 shows the error for
both algorithms. Fig. 8 illustrates the residual behavior, where the
adapted method shows noticeable spikes in the loss function due to
mesh regeneration. As observed in Fig. 7, the previously pronounced
local error near the right boundary has been effectively mitigated.
Furthermore, the error distribution appears substantially more uniform
throughout the domain.
8
Table 4
Average and median values for the number of epochs and the computational time for
training PINN with and without adaptation for benchmark BA.
 Number of epochs Computational time
 Average Median Average Median
 No adaptation 106338 35000 240.51 s 81.89 s
 Adaptation 18660 17000 49.36 s 45.21 s

8.3. 1D advection-dominated diffusion benchmark problem BA

We conducted each experiment 200 times, both with and without
adaptation, setting a tolerance of 10−4 and running 1000 epochs per
iteration, with a maximum of 1000 iterations per run. It is important
to note that three cases failed to achieve the desired numerical error
within 1000 iterations out of the 200 runs without adaptation. Both
algorithms were tested for 𝜀 = 0.05 with 200 collocation points.

Fig. 9 illustrates the comparison between an exemplary PINN solu-
tion and the exact solution.

The results show that the average number of epochs for training
without adaptation was 106 338, compared to 18 660 for the adaptation.
Similarly, the median number of epochs dropped from 35 000 without
adaptation to 17 000 with adaptation. In terms of computational time,
the adaptation reduced the average training time from 240.51 s to
49.36 s, and the median time from 81.89 s to 45.21 s. A summary of
these results can be found in Table 4, while Figs. 10(a) and 10(b)
display detailed comparisons of the number of epochs and training
times, respectively.

Furthermore, we examine exemplary results for error and residual
convergence in both versions of PINN. For these comparisons, we se-
lected runs with exactly 8000 epochs. Fig. 11 presents the error for both

J. Trynda et al. Journal of Computational Science 91 (2025) 102684
Fig. 8. Comparison of convergence for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B2. Computations were done on RTX 4070 GPU.
Fig. 9. Comparison of exact solution and PINN solution for benchmark BA.

Table 5
Average and median values for the number of epochs and the computational time for
training PINN with and without adaptation, for benchmark B3.
 Number of epochs Computational time
 Average Median Average Median
 No adaptation 377686 289000 2472.87 s 1868.11 s
 Adaptation 74745 69000 513.58 s 476.32 s

algorithms. With adaptation, the error remains uniformly low across
the entire domain, oscillating around numerical zero, whereas without
adaptation, significant errors accumulate near the domain singularity
on the right. Fig. 12 shows the residual behavior, where the adapted
method exhibits noticeable spikes in the loss function due to mesh
regeneration.

8.4. 2D Poison equation with manufactured solution of benchmark B3

We performed each experiment 50 times, both with and without
adaptation, using a tolerance of 10−3 and running 1000 epochs per
iteration, with a maximum of 1000 iterations per run. Both algorithms
were tested for 𝜇 = 0.1 with 40 000 collocation points.

The results indicate that the average number of epochs required
for training without adaptation was 377 686, whereas, with adaptation,
this was reduced to 74 745. Similarly, the median number of epochs
decreased from 289 000 without adaptation to 69 000 with adaptation.
In terms of computational time, the average training duration dropped
from 2472.87 s to 513.58 s with adaptation, while the median time
9
Table 6
Average and median values for the number of epochs and the computational time for
training PINN with and without adaptation, for benchmark B4.
 Number of epochs Computational time
 Average Median Average Median
 No adaptation 316000 242000 4355.58 s 3350.71 s
 Adaptation 143457 105000 2020.75 s 1493.72 s

decreased from 1868.11 s to 476.32 s. Out of 50 runs, training without
adaptation has not reached the set tolerance five times, while training
with adaptation has reached the expected tolerance goal every time. A
summary of these findings is provided in Table 5, and Figs. 13(a) and
13(b) offer detailed comparisons of the number of epochs and training
times.

Additionally, we analyze representative results for error and resid-
ual convergence in both versions of PINN. For these comparisons, we
selected runs with exactly 20 000 epochs. Fig. 14 shows the error for
both algorithms. Fig. 15 illustrates the residual behavior, where the
adapted method shows noticeable spikes in the loss function due to
mesh regeneration.

8.5. 2D Poison equation with manufactured solution of benchmark B4

We performed each experiment 35 times, both with and without
adaptation, using a tolerance of 10−3 and running 1000 epochs per
iteration, with a maximum of 1000 iterations per run. Both algorithms
were tested for 𝜇 = 0.5 with 160 000 collocation points.

The results indicate that the average number of epochs required
for training without adaptation was 316 000, whereas, with adaptation,
this was reduced to 143 457. Similarly, the median number of epochs
decreased from 242 000 without adaptation to 105 000 with adapta-
tion. In terms of computational time, the average training duration
dropped from 4355.58 s to 2020.75 s with adaptation, while the median
time decreased from 3350.71 s to 1493.72 s. A summary of these find-
ings is provided in Table 6, and Figs. 16(a) and 16(b) offer detailed
comparisons of the number of epochs and training times.

Additionally, we analyze representative results for error and resid-
ual convergence in both versions of PINN. For these comparisons, we
selected runs with exactly 20 000 epochs. Fig. 17 shows the error for
both algorithms. Fig. 18 illustrates the residual behavior, where the
adapted method shows noticeable spikes in the loss function due to
mesh regeneration.

8.6. Additional comment on numerical results

The observed reduction in computational time in the adaptive set-
ting, relative to the non-adaptive case, stems from the nature of the

J. Trynda et al. Journal of Computational Science 91 (2025) 102684
Fig. 10. Comparison of the number of epochs (left panel) and the computational time (right panel) required to reach given tolerance. 200 repeated runs were tested for PINN
without adaptation and with middle point adaptation on an RTX 4070 GPU for benchmark BA.
Fig. 11. Comparison of error for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark BA. Computations were done on RTX 4070 GPU.
Fig. 12. Comparison of convergence for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark BA. Computations were done on RTX 4070 GPU.
stopping criterion employed in the numerical experiments. In all sce-
narios, the algorithm is designed to terminate after reaching a pre-
defined accuracy threshold. The adaptive procedure, by dynamically
refining the placement of collocation points, enables the algorithm
to reach this accuracy more efficiently, thereby yielding a noticeable
decrease in total run-time.

The stopping condition is evaluated on the basis of localized error
estimates across mesh elements. For each element, we approximate the
residual norm — computed using the trapezoidal rule — and normal-
ize it by the size of the element. This normalization is particularly
pertinent in the adaptive setting, where the mesh is non-uniform. The
10
accuracy thresholds were set to 10−4 in one-dimensional and 10−3 in
two-dimensional benchmarks.

The main stopping criterion is reaching a prescribed residual norm
in the 𝐿2 sense. The 1000 training epochs referenced in the numerical
examples refer to a fixed number of epochs per adaptation step, not a
global stopping limit. Overfitting is mitigated by residual-based adap-
tation: collocation points are concentrated in regions with high local
residuals, ensuring a meaningful and robust reduction of the global
residual norm across iterations.

It is important to emphasize that the presented numerical results
were generated under a so-called final accuracy test regime, where
comparisons are made based on computational cost required to achieve

J. Trynda et al. Journal of Computational Science 91 (2025) 102684
Fig. 13. Comparison of the number of epochs (left panel) and the computational time (right panel) required to reach given tolerance. 200 repeated runs were tested for PINN
without adaptation and with middle point adaptation on an RTX 4070 GPU for benchmark B3.
Fig. 14. Comparison of error for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B3. Computations were done on RTX 4070 GPU.
Fig. 15. Comparison of convergence for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B3. Computations were done on RTX 4070 GPU.
a common target accuracy, not on absolute error levels at a fixed com-
putational budget. Accordingly, while the adaptive strategy does not
necessarily produce markedly lower final errors compared to the non-
adaptive method, it achieves the desired precision with significantly
fewer computational resources and training epochs. This constitutes a
critical practical advantage.

Nevertheless, it is possible to assess relative accuracy under an alter-
native regime—namely, a final budget test, wherein both adaptive and
non-adaptive approaches are executed with an identical computational
budget. In such a setting, one may directly compare the residual norms
attained by both methods, providing further insight into their relative
approximation quality. Although such a study is beyond the scope of
the current manuscript, it could serve as a complementary analysis in
future work.
11
In summary, the contribution of the present work lies primarily in
the demonstrated computational efficiency and methodological adapt-
ability of the proposed framework, which are especially relevant in
large-scale or high-dimensional settings where computational resources
are a limiting factor.

During all benchmark simulations, the weights and biases of the
PINNs remained within finite bounds, typically in the range [−20, 20]
for weights and [−10, 10] for biases. No numerical overflows occurred,
which confirms that the training process remained within a compact
parameter set 𝛩 ⊂ R𝑁𝐺 , thus supporting Hypothesis 4.

The benchmark PDEs are well-posed elliptic or convection–diffusion
problems with smooth data and classical solutions 𝑢 ∈ 𝐶2(𝛺), validat-
ing Hypothesis 1. Since network architectures use smooth activation
functions (e.g. tanh), the realizations 𝑔 belong to 𝐶2(𝛺), satisfying
𝜃

J. Trynda et al. Journal of Computational Science 91 (2025) 102684
Fig. 16. Comparison of the number of epochs (left panel) and the computational time (right panel) required to reach given tolerance. 200 repeated runs were tested for PINN
without adaptation and with middle point adaptation on an RTX 4070 GPU for benchmark B4.
Fig. 17. Comparison of error for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B4. Computations were done on RTX 4070 GPU.
Fig. 18. Comparison of convergence for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B4. Computations were done on RTX 4070 GPU.
Hypothesis 2. The continuity of the mapping 𝜃 ↦ 𝑔𝜃 (Hypothesis 3)
follows from standard results in neural networks with differentiable
activations.

9. Conclusions and future work

This paper introduced an adaptive sampling strategy for Physics-
Informed Neural Networks (PINNs) directly inspired by mesh refine-
ment methods in the Finite Element Method community. Rather than
12
fully relying on uniform sampling, the approach refines a coarse guid-
ing mesh by subdividing elements where the residual is large, ensuring
that the collocation points naturally concentrate in regions that require
a steeper gradient. Comparisons on a range of 1D and 2D benchmark
problems indicate faster training and a more robust convergence com-
pared to the nonadaptive approach, particularly in the presence of steep
gradients or boundary-layer phenomena.

This approach offers several core advantages. It naturally extends
to arbitrary-dimensional problems when given a suitable guiding mesh

J. Trynda et al. Journal of Computational Science 91 (2025) 102684
and nested adaptation strategy. It remains agnostic to specific mesh
refinement policies and ensures that collocation densities can be dy-
namically scaled in proportion to local residual. Crucially, the total
number of collocation points and the number of boundary points are
decoupled from the mesh size and can be adjusted at any stage.
The probability distributions for sampling within elements or on their
boundaries can also be flexibly changed.

The benchmark results confirm the synergy of two seemingly op-
posing aspects: a deterministic ℎ-FEM inspired approach that refines
collocation points in high-residual regions, balanced by a stochastic
‘blur’ that smooths out sampling. This strategy significantly reduces
computational effort, especially compared to versions without adap-
tation. The stochastic ‘smoothing’ of the collocation points allocation
brings additional advantage, protecting the strategy to omit any global
minimizer with the probability 1 (see Section 6 item 8).

Future work will focus on aligning mesh refinement with temporal
evolution in time-dependent problems (e.g., using causal sampling),
scaling up to three-dimensional domains, and comparing performance
against methods such as RAR, PDF-based refinement, and R3 sam-
pling. Rigorous theoretical studies will also be essential for establishing
stronger convergence guarantees.

The strategy can be extended in several ways. First, combining
it with causal sampling [27] appears promising for time-dependent
PDEs, ensuring that mesh refinement proceeds in sync with evolving
solution features. Second, further testing on three-dimensional domains
and more complex geometries would clarify how mesh-based sampling
scales with problem dimensionality. Finally, a systematic comparison
with other adaptive approaches such as RAR [24], PDF-based refine-
ment [25], or R3 sampling [27] could pinpoint performance gains. At
the same time, rigorous theoretical analyses would establish deeper
convergence guarantees.

Finally, the proposed residual-driven adaptation mechanism could
be naturally extended to variational formulations such as Variational
Physics-Informed Neural Networks (VPINNs) [36], and Robust Varia-
tional Physics-Informed Neural Networks (RVPINNs) [37], where lo-
cal error indicators and element-wise refinement strategies are inher-
ently compatible with our mesh-guided collocation framework. This
opens a promising direction for further methodological and theoretical
development.

CRediT authorship contribution statement

Jan Trynda: Writing – original draft, Visualization, Software, In-
vestigation. Paweł Maczuga: Software. Albert Oliver-Serra: Writing
– original draft, Validation, Conceptualization. Luis Emilio García-
Castillo: Writing – review & editing. Robert Schaefer: Writing –
original draft, Formal analysis. Maciej Woźniak: Writing – review &
editing, Writing – original draft, Validation, Supervision, Conceptual-
ization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors are grateful for the support from the funds that the
Polish Ministry of Science and Higher Education assigned to the AGH
University of Krakow. The work was partially supported by the ‘‘Excel-
lence initiative - research university’’ for the AGH University of Krakow.
Albert Oliver-Serra is supported by the ‘‘Ayudas para la recualificación
del sistema universitario español’’ (grant funded by the ULPGC, the
Ministry of Universities by Order UNI/501/2021 of 26 May, and the
European Union-Next Generation EU Funds) and by the grant contract
13
‘‘PRECOMP02 SD-24/03’’ (awarded by the Ministry of Universities,
Science, Innovation, and Culture of the Government of the Canary
Islands to the University of Las Palmas de Gran Canaria). Luis E. Garcia-
Castillo has been supported by the Spanish Government throughout
the project PDC2023-145929-C31 and by the Regional Government of
Madrid throughout the project DISCO6G-CM.

Data availability

No data was used for the research described in the article.

References

[1] Z. Aldirany, R. Cottereau, M. Laforest, S. Prudhomme, Multi-level neural net-
works for accurate solutions of boundary-value problems, Comput. Methods
Appl. Mech. Engrg. 419 (2024) 116666, http://dx.doi.org/10.1016/j.cma.2023.
116666.

[2] A. Bihlo, R.O. Popovych, Physics-informed neural networks for the shallow-
water equations on the sphere, J. Comput. Phys. 456 (2022) 111024, http:
//dx.doi.org/10.1016/j.jcp.2022.111024.

[3] S. Cai, Z. Mao, Z. Wang, M. Yin, G.E. Karniadakis, Physics-informed neural
networks (PINNs) for fluid mechanics: a review, Acta Mech. Sin. 37 (12) (2021)
1727–1738, http://dx.doi.org/10.1007/s10409-021-01148-1.

[4] X. Jin, S. Cai, H. Li, G.E. Karniadakis, NSFnets (Navier-Stokes flow nets):
Physics-informed neural networks for the incompressible Navier-Stokes equa-
tions, J. Comput. Phys. 426 (2021) 109951, http://dx.doi.org/10.1016/j.jcp.
2020.109951.

[5] G.E. Karniadakis, I.G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-
informed machine learning, Nat. Rev. Phys. 3 (6) (2021) 422–440, http://dx.
doi.org/10.1038/s42254-021-00314-5.

[6] P. Maczuga, M. Sikora, M. Skoczeń, P. Rożnawski, F. Tłuszcz, M. Szubert, M.
Łoś, W. Dzwinel, K. Pingali, M. Paszyński, Physics informed neural network
code for 2D transient problems (PINN-2DT) compatible with google colab, 2024,
http://dx.doi.org/10.48550/arXiv.2310.03755, arXiv:2310.03755.

[7] Z. Mao, A.D. Jagtap, G.E. Karniadakis, Physics-informed neural networks for
high-speed flows, Comput. Methods Appl. Mech. Engrg. 360 (2020) 112789,
http://dx.doi.org/10.1016/j.cma.2019.112789.

[8] S. Mishra, R. Molinaro, Estimates on the generalization error of physics-informed
neural networks for approximating a class of inverse problems for PDEs, IMA
J. Numer. Anal. 42 (2) (2021) 981–1022, http://dx.doi.org/10.1093/imanum/
drab032.

[9] M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707,
http://dx.doi.org/10.1016/j.jcp.2018.10.045.

[10] M. Rasht-Behesht, C. Huber, K. Shukla, G.E. Karniadakis, Physics-informed
neural networks (PINNs) for wave propagation and full waveform inver-
sions, J. Geophys. Res.: Solid Earth 127 (5) (2022) http://dx.doi.org/10.1029/
2021jb023120.

[11] M.W.M.G. Dissanayake, N. Phan-Thien, Neural-network-based approximations for
solving partial differential equations, Commun. Numer. Methods Eng. 10 (3)
(1994) 195–201, http://dx.doi.org/10.1002/cnm.1640100303.

[12] I. Lagaris, A. Likas, D. Fotiadis, Artificial neural networks for solving ordinary
and partial differential equations, IEEE Trans. Neural Netw. 9 (5) (1998)
987–1000, http://dx.doi.org/10.1109/72.712178.

[13] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, 2014, http:
//dx.doi.org/10.48550/arXiv.1412.6980.

[14] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation
in machine learning: a survey, J. Mach. Learn. Res. 18 (153) (2018) 1–43, URL
http://jmlr.org/papers/v18/17-468.html.

[15] C.C. Margossian, A review of automatic differentiation and its efficient imple-
mentation, WIREs Data Min. Knowl. Discov. 9 (4) (2019) http://dx.doi.org/10.
1002/widm.1305.

[16] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A.
Desmaison, L. Antiga, A. Lerer, Automatic differentiation in pytorch, 2017.

[17] L.D. McClenny, U.M. Braga-Neto, Self-adaptive physics-informed neural networks,
J. Comput. Phys. 474 (2023) 111722, http://dx.doi.org/10.1016/j.jcp.2022.
111722.

[18] R. van der Meer, C.W. Oosterlee, A. Borovykh, Optimally weighted loss functions
for solving PDEs with neural networks, J. Comput. Appl. Math. 405 (2022)
113887, http://dx.doi.org/10.1016/j.cam.2021.113887.

[19] M. Łoś, M. Paszyński, Robust physics informed neural networks, 2024, http:
//dx.doi.org/10.48550/arXiv.2401.02300, arXiv:2401.02300.

[20] S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient flow
pathologies in physics-informed neural networks, SIAM J. Sci. Comput. 43 (5)
(2021) A3055–A3081, http://dx.doi.org/10.1137/20m1318043.

http://dx.doi.org/10.1016/j.cma.2023.116666
http://dx.doi.org/10.1016/j.cma.2023.116666
http://dx.doi.org/10.1016/j.cma.2023.116666
http://dx.doi.org/10.1016/j.jcp.2022.111024
http://dx.doi.org/10.1016/j.jcp.2022.111024
http://dx.doi.org/10.1016/j.jcp.2022.111024
http://dx.doi.org/10.1007/s10409-021-01148-1
http://dx.doi.org/10.1016/j.jcp.2020.109951
http://dx.doi.org/10.1016/j.jcp.2020.109951
http://dx.doi.org/10.1016/j.jcp.2020.109951
http://dx.doi.org/10.1038/s42254-021-00314-5
http://dx.doi.org/10.1038/s42254-021-00314-5
http://dx.doi.org/10.1038/s42254-021-00314-5
http://dx.doi.org/10.48550/arXiv.2310.03755
http://arxiv.org/abs/2310.03755
http://dx.doi.org/10.1016/j.cma.2019.112789
http://dx.doi.org/10.1093/imanum/drab032
http://dx.doi.org/10.1093/imanum/drab032
http://dx.doi.org/10.1093/imanum/drab032
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1029/2021jb023120
http://dx.doi.org/10.1029/2021jb023120
http://dx.doi.org/10.1029/2021jb023120
http://dx.doi.org/10.1002/cnm.1640100303
http://dx.doi.org/10.1109/72.712178
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.48550/arXiv.1412.6980
http://jmlr.org/papers/v18/17-468.html
http://dx.doi.org/10.1002/widm.1305
http://dx.doi.org/10.1002/widm.1305
http://dx.doi.org/10.1002/widm.1305
http://refhub.elsevier.com/S1877-7503(25)00161-9/sb16
http://refhub.elsevier.com/S1877-7503(25)00161-9/sb16
http://refhub.elsevier.com/S1877-7503(25)00161-9/sb16
http://dx.doi.org/10.1016/j.jcp.2022.111722
http://dx.doi.org/10.1016/j.jcp.2022.111722
http://dx.doi.org/10.1016/j.jcp.2022.111722
http://dx.doi.org/10.1016/j.cam.2021.113887
http://dx.doi.org/10.48550/arXiv.2401.02300
http://dx.doi.org/10.48550/arXiv.2401.02300
http://dx.doi.org/10.48550/arXiv.2401.02300
http://arxiv.org/abs/2401.02300
http://dx.doi.org/10.1137/20m1318043

J. Trynda et al. Journal of Computational Science 91 (2025) 102684
[21] S. Wang, X. Yu, P. Perdikaris, When and why PINNs fail to train: A neural
tangent kernel perspective, J. Comput. Phys. 449 (2022) 110768, http://dx.doi.
org/10.1016/j.jcp.2021.110768.

[22] J. Cheng Wong, C. Ooi, A. Gupta, Y.-S. Ong, Learning in sinusoidal spaces
with physics-informed neural networks, IEEE Trans. Artif. Intell. (2024) 1–15,
http://dx.doi.org/10.1109/tai.2022.3192362.

[23] F.M. Rohrhofer, S. Posch, C. Gößnitzer, B.C. Geiger, On the role of fixed
points of dynamical systems in training physics-informed neural networks, 2023,
http://dx.doi.org/10.48550/arXiv.2203.13648, arXiv:2203.13648.

[24] L. Lu, X. Meng, Z. Mao, G.E. Karniadakis, DeepXDE: A deep learning library
for solving differential equations, SIAM Rev. 63 (1) (2021) 208–228, http:
//dx.doi.org/10.1137/19m1274067.

[25] M.A. Nabian, R.J. Gladstone, H. Meidani, Efficient training of physics-informed
neural networks via importance sampling, Comput.-Aided Civ. Infrastruct. Eng.
36 (8) (2021) 962–977, http://dx.doi.org/10.1111/mice.12685.

[26] C. Wu, M. Zhu, Q. Tan, Y. Kartha, L. Lu, A comprehensive study of non-adaptive
and residual-based adaptive sampling for physics-informed neural networks,
Comput. Methods Appl. Mech. Engrg. 403 (2023) 115671, http://dx.doi.org/
10.1016/j.cma.2022.115671.

[27] A. Daw, J. Bu, S. Wang, P. Perdikaris, A. Karpatne, Mitigating propaga-
tion failures in physics-informed neural networks using retain-resample-release
(R3) sampling, 2023, http://dx.doi.org/10.48550/arXiv.2207.02338, arXiv:2207.
02338.

[28] M.J. Berger, J. Oliger, Adaptive mesh refinement for hyperbolic partial differ-
ential equations, J. Comput. Phys. 53 (3) (1984) 484–512, http://dx.doi.org/10.
1016/0021-9991(84)90073-1.

[29] L. Schwartz, Analyse Mathematique, Hermann, Paris, 1967.
[30] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,

Springer New York, 2011, http://dx.doi.org/10.1007/978-0-387-70914-7.
[31] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016, http:

//www.deeplearningbook.org.
[32] P. Petersen, M. Raslan, F. Voigtlaender, Topological properties of the set of

functions generated by neural networks of fixed size, Found. Comput. Math.
(2021) 375–444, http://dx.doi.org/10.1007/s10208-020-09461-0.

[33] P. Frey, P.L. George, Mesh Generation, second ed., Wiley-ISTE, 2013.
[34] M.D. Vose, The Simple Genetic Algorithm: Foundations and Theory, MIT Press,

1999, http://dx.doi.org/10.7551/mitpress/6229.001.0001.
[35] A.H.G. Rinnoy Kan, G.T. Timmer, Stochastic global optimization methods, Math.

Program. 39 (1987) 27–56.
[36] C. Uriarte, M. Bastidas, D. Pardo, J.M. Taylor, S. Rojas, Optimizing variational

physics-informed neural networks using least squares, Comput. Math. Appl.
185 (2025) 76–93, http://dx.doi.org/10.1016/j.camwa.2025.02.022, URL https:
//www.sciencedirect.com/science/article/pii/S0898122125000811.

[37] S. Rojas, P. Maczuga, J. Muñoz-Matute, D. Pardo, M. Paszyński, Robust varia-
tional physics-informed neural networks, Comput. Methods Appl. Mech. Engrg.
425 (2024) 116904, http://dx.doi.org/10.1016/j.cma.2024.116904, URL https:
//www.sciencedirect.com/science/article/pii/S0045782524001609.

Jan Trynda graduated in 2022 with engineering degree and
then got his master degree in 2023 at Computer Science at
AGH University of Science and Technology, Kraków, Poland.
His research interest includes physics informed neural net-
works as well as algorithms for different architectures of
parallel machines.

Paweł Maczuga received Master’s degree in Computer
Science from AGH University of Kraków (Poland) in 2021.
He is currently pursuing PhD degree in the same university.
His work centers around graph grammars (with applications
in mesh generation) and simulations using Finite Element
Method as well as Physics-Informed Neural Networks.
14
Albert Oliver-Serra is an associate professor at the Uni-
versity of Las Palmas de Gran Canaria, Spain. His research
focuses on applying numerical methods to environmental
problems. He has participated in seven research projects
studying wind fields, solar radiation, and air quality, leading
to the development of two registered software programs:
‘‘MapSol’’ and ‘‘Wind3D’’, with the latter generating tech-
nology transfer contracts. His research interests also include
mesh generation for environmental modeling and simula-
tion. His recent research, in the framework of the project
"Machine Learning Methods for Environmental Problems"
that he’s leading, has expanded into Physics- Informed
Neural Networks (PINNs). He has a strong international col-
laboration with Professor Maciej Paszyski’s research group
at AGH University.

Luis Emilio Garcia-Castillo was born in Madrid, Spain,
in 1967. He received the Ingeniero de Telecomunicación
degree and the Ph.D. degree from the Universidad Politóc-
nica de Madrid, Madrid, in 1992 and 1998, respectively.
From 1997 to 2000, he was an Associate Professor with the
Universidad Politócnica de Madrid. From 2000 to 2005, he
was an Associate Professor with the Universidad de Alcaló,
Madrid. Since 2005, he has been with the Department of
Signal Theory and Communications, Universidad Carlos III
de Madrid, Madrid. He has been the Principal Investigator
of five projects of the National Plan of Research, Spain, one
of the Regional Plan of Research, Madrid, and one with the
American Air Force Office of Scientific Research, Arlington
County, VA, USA. He has also participated in a number of
projects and contracts, financed by international, European,
and national institutions and companies. He has authored
one book, five contributions for chapters and articles in
books, over 58 articles in international journals, and over
100 papers in international conferences, symposiums, and
workshops, plus a number of national publications and re-
ports. His current research interests include the application
of numerical methods to high-performance computational
electromagnetics including finite elements, hp-adaptivity,
hybrid methods, and domain decomposition methods. Dr.
Garcia-Castillo received two prizes for his Ph.D. thesis from
the Colegio Oficial Ingenieros de Telecomunicación, Madrid,
and the Universidad Politócnica de Madrid.

Robert Schaefer is a Full professor at the Faculty of Com-
puter Science, AGH University of Science and Technology.
Author and co-author of about 200 scientific books, papers,
and conference contributions, in particular author of the
book "Foundation of Genetic Global Optimization" (Springer
2007). General chair of the PPSN 2010 Conference and
Steering Committee Member of the PPSN Series. PC member
and cochair of more than 100 scientific conferences in
computational sciences and artificial intelligence. Recent
research areas: memetic adaptive algorithms solving forward
and inverse problems for PDEs—application to oil and gas
surveying, theory of stochastic population-based algorithms,
computing multi-agent systems. Former research: modeling
of the blood flow in arteries, modeling of nonlinear flow in
porous media.

Maciej Wozniak is an associated professor on Institute of
Computer Science in AGH University of Science and Tech-
nology, Kraków, Poland. He received his master degree in
Computer Science in 2013. He received his bachelor degree
in Business Management in 2015. In 2017 he received
his Ph.D. in computational science from AGH-UST. Since
2012 he is a member of Prof. Maciej Paszynski research
group, working primarily on fast parallel direct solvers
for isogeometric finite element methods targeting different
parallel architectures.

http://dx.doi.org/10.1016/j.jcp.2021.110768
http://dx.doi.org/10.1016/j.jcp.2021.110768
http://dx.doi.org/10.1016/j.jcp.2021.110768
http://dx.doi.org/10.1109/tai.2022.3192362
http://dx.doi.org/10.48550/arXiv.2203.13648
http://arxiv.org/abs/2203.13648
http://dx.doi.org/10.1137/19m1274067
http://dx.doi.org/10.1137/19m1274067
http://dx.doi.org/10.1137/19m1274067
http://dx.doi.org/10.1111/mice.12685
http://dx.doi.org/10.1016/j.cma.2022.115671
http://dx.doi.org/10.1016/j.cma.2022.115671
http://dx.doi.org/10.1016/j.cma.2022.115671
http://dx.doi.org/10.48550/arXiv.2207.02338
http://arxiv.org/abs/2207.02338
http://arxiv.org/abs/2207.02338
http://arxiv.org/abs/2207.02338
http://dx.doi.org/10.1016/0021-9991(84)90073-1
http://dx.doi.org/10.1016/0021-9991(84)90073-1
http://dx.doi.org/10.1016/0021-9991(84)90073-1
http://refhub.elsevier.com/S1877-7503(25)00161-9/sb29
http://dx.doi.org/10.1007/978-0-387-70914-7
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/10.1007/s10208-020-09461-0
http://refhub.elsevier.com/S1877-7503(25)00161-9/sb33
http://dx.doi.org/10.7551/mitpress/6229.001.0001
http://refhub.elsevier.com/S1877-7503(25)00161-9/sb35
http://refhub.elsevier.com/S1877-7503(25)00161-9/sb35
http://refhub.elsevier.com/S1877-7503(25)00161-9/sb35
http://dx.doi.org/10.1016/j.camwa.2025.02.022
https://www.sciencedirect.com/science/article/pii/S0898122125000811
https://www.sciencedirect.com/science/article/pii/S0898122125000811
https://www.sciencedirect.com/science/article/pii/S0898122125000811
http://dx.doi.org/10.1016/j.cma.2024.116904
https://www.sciencedirect.com/science/article/pii/S0045782524001609
https://www.sciencedirect.com/science/article/pii/S0045782524001609
https://www.sciencedirect.com/science/article/pii/S0045782524001609

	An h-adaptive collocation method for Physics-Informed Neural Networks
	Introduction
	The idea of PINN
	Learning PINN with a stochastic adaptation of collocation points
	Details of sampling measure adaptation strategy
	h-FEM based densities
	Adapting densities
	Sampling collocation points

	The problem of optimal collocation points selection
	Advantages of the proposed framework
	The schedule of experimental verification
	Metrics
	Benchmarks

	Benchmark results
	1D Poison equation with manufactured solution of benchmark B1
	1D Poison equation with manufactured solution of benchmark B2
	1D Advection-dominated diffusion benchmark problem BA
	2D Poison equation with manufactured solution of benchmark B3
	2D Poison equation with manufactured solution of benchmark B4
	Additional Comment on Numerical Results

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

