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 A B S T R A C T

Despite their flexibility and success in solving partial differential equations, Physics-Informed Neural Networks 
(PINNs) often suffer from convergence issues, even failing to converge, particularly in problems with steep 
gradients or localized features. Several remedies have been suggested to solve this problem, but one of the 
most promising is the dynamical adaptation of the collocation points. This paper explores a novel adaptive 
sampling method, of a stochastic nature, based on the Adaptive Mesh Refinement used in the Finite Element 
Method. The error estimates in our refinement algorithm are based on the value of the residual loss function. 
We tested our method against a variety of 1D and 2D benchmark problems that exhibit steep gradients near 
certain boundaries, with promising results.
1. Introduction

Physics-informed neural networks (PINNs) are a recent development 
in the machine learning community that provide a viable alternative 
to classical numerical methods to solve partial differential equations 
(PDEs) [1–10]. Instead of using an extensive database, as in data-driven 
deep learning approaches, PINNs use the problem’s physics (the set of 
PDEs) as the neural network’s loss function. In the 1990s, the potential 
of neural networks as universal function approximators to solve PDEs 
was already recognized [11,12]. However, it is only now, with the vast 
advances in computational capabilities, training algorithms [13] and 
automatic differentiation methods [14–16], that PINNs have become 
widely available.

Hence, the basic idea of PINNs is to train the neural network to 
minimize the error regarding the PDE residual and the boundary and 
initial conditions in a set of so-called collocation points.

Despite their success in a wide range of scientific applications, 
PINNs sometimes fail to converge to the correct solution. Various 
motives may explain this behavior. Some authors consider the problem 
related to the imposition of initial and or boundary conditions, and 
have modified the corresponding weights in the loss function [17,18] 
or have strongly included the boundary conditions in the PDE formu-
lation [19]; others found that the problem lies in the stiffness of the 
gradient flow dynamics [20,21], and other authors have associated it 
with the location of the collocation points used during PINN train-
ing [22,23]. They note that the collocation points in the domain interior 
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can only compute the PDE residual without considering the initial and 
boundary conditions. Therefore, the solution is not unique at these 
interior points, and the PINN may converge to a trivial solution. In this 
paper, we attack the problem from this angle and propose an adaptive 
sampling of collocation points to mitigate this issue

To improve the placement of collocation points in Physics-Informed 
Neural Networks (PINNs), researchers have proposed non-uniform and 
adaptive sampling strategies. In particular, in [7], the authors propose a 
non-uniform distribution that clusters the collocation points in regions 
where the solution exhibits steep gradients. Although effective, this 
approach requires a priori knowledge about the behavior of the solution 
and manual intervention to identify regions of interest. In contrast, 
adaptive strategies automate this process by dynamically concentrating 
the collocation points in areas where the loss function is relatively 
large. For example, in [24], Lu et al. introduce the Residual-Based 
Adaptive Refinement (RAR) technique, inspired by the Adaptive Mesh 
Refinement (AMR) method widely used in the Finite Element Method 
(FEM). An alternative adaptive strategy is presented in [25], where 
the collocation points are distributed according to a probability den-
sity function (PDF) that is proportional to the residual of the partial 
differential equation (PDE). A comparative study of these strategies, 
along with proposed refinements, is conducted in the recent work of 
Wu et al. [26].

Building on these adaptive approaches, in [27], the authors demon-
strate that PINN training may not converge to the true solution due to 
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the insufficient propagation of information from the boundary or initial 
conditions into the interior of the domain. This phenomenon results in 
narrow regions with large residuals surrounded by areas of otherwise 
small errors. To mitigate this issue, the authors propose the Retain-
Resample-Release (R3) sampling algorithm. The R3 strategy incorporates 
three key mechanisms: (i) Retaining collocation points located in high-
residual regions, (ii) Resampling a portion of points to ensure a uniform 
distribution across the domain, and (iii) Releasing those points where 
the residual has decreased and is no longer significant. For time-
dependent problems, the authors introduce a causal variant, termed
Causal R3, which prevents the progression of collocation points over 
time until the information from preceding states has been adequately 
propagated throughout the spatial domain.

This paper proposes a new adaptive strategy that adopts algorithms 
inspired by Adaptive Mesh Refinement in the FEM community [28]. 
Although one of the features of PINNs is their meshless nature, we 
propose starting with a coarse mesh of the domain and refining the 
elements where the residual is larger than a certain tolerance. This 
strategy conceptually resembles the idea of the R3 algorithm proposed 
in [27]. The elements with a high residual will be refined between 
training iterations (Retain), while the elements where the error de-
creases will not be refined again (Release). Additionally, the mesh 
structure ensures a uniform distribution over the domain (Resample). 
Our method combines two seemingly opposing strategies: a determin-
istic ℎ-FEM inspired algorithm that refines the mesh in high-residual 
regions and a stochastic sampling approach that smooths out colloca-
tion points across the domain. We tested our method on a series of 
1D and 2D problems that exhibit steep gradients near some of their 
boundaries. To validate our approach, for each problem, we compared 
the time and number of epochs required to train a Neural Network with 
identical hyperparameters, using our adaptive sampling strategy and a 
non-adaptive sampling strategy. To ensure reliable results, we trained 
the Neural Network multiple times for each strategy and evaluated the 
statistical measures. Specifically, we compare the mean and median 
training times, as well as the mean and median number of epochs, 
between the proposed strategy and a non-adaptive sampling strategy. 
The code is provided by the authors.1

2. The idea of PINN

Let us define the class of forward PDE problems that allows us to 
clearly pose the idea of the PINN method. This formulation can easily 
be extended to other similar problems. We denote by 𝛺 ⊂ R𝑛 the 
bounded set with a positive measure and the Lipschitz boundary 𝜕𝛺
(e.g., a composition of (𝑛 − 1)–dimensional smooth surfaces, without 
infinitely sharp junctions), so that 𝛺 is a compact set. 
Find 𝑢 ∈ 𝐶𝑚(𝛺);𝐴(𝑢(𝑥)) = 𝑓 (𝑥) ∀𝑥 ∈ 𝛺,𝐵(𝑢(𝑥)) = 𝑏(𝑥) ∀𝑥 ∈ 𝜕𝛺 (1)

where 𝐴 ∶ 𝐶𝑚(𝛺) → 𝐶(𝛺), 𝑓 ∈ 𝐶(𝛺), 𝐵 ∶ {𝐶𝑚(𝛺)|𝜕𝛺 → 𝐶(𝜕𝛺)}, 
𝑏 ∈ 𝐶(𝜕𝛺), and 𝑚 is large enough to satisfy the requirements of 
the PDE operators 𝐴 and 𝐵. The spaces 𝐶𝑚(𝛺), 𝐶(𝛺),  and 𝐶(𝜕𝛺) are 
normed spaces equipped with the infinity norm denoted by ‖ ⋅‖∞,𝑚,𝛺 , ‖ ⋅
‖∞,𝛺 ,  and ‖ ⋅ ‖∞,𝜕𝛺, respectively. (see, e.g. Schwartz Laurent; Analyze 
Mathematique, Hermann, Paris 1967 for details of the norm defini-
tions [29]).

The residual of the problem (1) is a composition of two functions: 
𝐶𝑚(𝛺) ∋ 𝑣 → 𝑟𝑒𝑠𝛺(𝑣) = (𝐴(𝑣) − 𝑓 ) ∈ 𝐶(𝛺) (2)

𝐶𝑚(𝛺) ∋ 𝑣 → 𝑟𝑒𝑠𝜕𝛺(𝑣) = (𝐵(𝑣) − 𝑏) ∈ 𝐶(𝜕𝛺) (3)

Of course, if 𝑢 ∈ 𝐶𝑚(𝛺) is a solution to (1), then 𝑟𝑒𝑠𝛺(𝑢) = 0 and 
𝑟𝑒𝑠𝜕𝛺(𝑢) = 0 are continuous functions in 𝛺 and 𝜕𝛺, respectively. 

1 https://github.com/JanTry/PINN_HP.
2 
Because 𝐶(𝛺) and 𝐶(𝜕𝛺) are subspaces of the Lebesgue spaces 𝐿2(𝛺), 
and 𝐿2(𝜕𝛺), we can use their respective norms ‖𝑟𝑒𝑠𝛺(𝑤)‖2,𝛺, and 
‖𝑟𝑒𝑠𝜕𝛺(𝑤)‖2,𝜕𝛺 to measure the error of the residual components (2), (3) 
for any approximate solution 𝑤 ∈ 𝐶𝑚(𝛺) to (1). We refer to [30] for 
details concerning function spaces, their topology, and PDEs.

Hypothesis 1.  Let us assume that the operators 𝐴 and 𝐵 are con-
tinuous in adequate topologies, and the exact problem (1) possesses a 
unique solution 𝑢 ∈ 𝐶𝑚(𝛺).

The above hypothesis is satisfied for almost all PDE-BV problems 
well posed in the sense of Hadamard.

Now, we introduce the set of functions 
𝐺 = {𝑔𝜃 ∶ 𝛺 → R, 𝜃 ∈ R𝑁𝐺} (4)

being the realizations of a single predefined layered ANN architecture 
composed of a fixed number of layers. The input layer contains 𝑛
neurons, and the output layer contains a single neuron. All neurons are 
equipped with the same activation function. The neurons are totally 
connected between two consecutive layers.

The realizations 𝑔𝜃 are indexed by their learnable parameters
(weights, biases) denoted by 𝜃 ∈ R𝑁𝐺 , where 𝑁𝐺 is the number of such 
parameters of the architecture. (see, e.g. [31] for ANN’s background).

Hypothesis 2.  We assume that 𝐺 ⊂ 𝐶𝑚(𝛺), which allows us to 
compute the operators 𝑟𝑒𝑠𝛺 , 𝑟𝑒𝑠𝜕𝛺 for all PINN functions 𝑔𝜃 ∈ 𝐺.

Hypothesis 3.  The mapping 𝑇 ∶ 𝛩 ∋ 𝜃 → 𝑇 (𝜃) = 𝑔𝜃 ∈ 𝐺 returning the 
PINN instance of the assumed architecture is continuous from topology 
in R𝑁𝐺  to the topology in 𝐶𝑚(𝛺) imposed by the norm ‖ ⋅ ‖∞,𝑚,𝛺.

The above Hypotheses  2 and 3 are satisfied for a broad class of ANN 
architectures in which the activation functions are at least 𝑚–times 
continuously differentiable.

Hypothesis 4.  Learnable parameters 𝜃 of all realizations belong to the 
admissible compact set 𝛩 ⊂ R𝑁𝐺 .

Definition 2.1.  The PINN approximation of (1) will be 𝑔𝜃̂ ∈ 𝐺 where 
𝜃̂ ∈ 𝛩 that satisfies 
𝜃̂ = arg min𝜃∈𝛩{‖𝑟𝑒𝑠𝛺(𝑔𝜃)‖22,𝛺 + ‖𝑟𝑒𝑠𝜕𝛺(𝑔𝜃)‖22,𝜕𝛺} (5)

Remark 1.  Given Hypotheses  1–4 the problem (5) admits at least one 
solution.

The above Remark  1 is a direct consequence of the Weierstrass 
extreme value theorem (see, e.g., [29]) applied to the composition of 
continuous functions (PINN instantiation mapping 𝑇 , PDE operators 𝐴
and 𝐵, norms ‖ ⋅ ‖2,𝛺, ‖ ⋅ ‖2,𝜕𝛺 and basic algebraic operations) that are 
continuous in the compact set 𝛩.

Remark 2.  The solution of the problem (5) respecting Hypotheses 
1–4 will be unique if the exact solution 𝑢 belongs to 𝐺. Generally, the 
number of solutions 𝜃̂ to (5) may be larger than one because 𝐺 is not 
a convex set. Moreover 𝑇 (𝜃̂) is not necessarily the best approximation 
of the exact solution 𝑢 by the ANN realization belonging to 𝐺, which 
in the general case (omitting Hypothesis  4) does not exist (see [32] for 
details).

The solution of the above PINN problem will be obtained by a 
proper machine learning routine using loss functions, which represent 
values of both norms appearing in (5).

The collocation points in 𝛺 and 𝜕𝛺 can be sampled using a specific 
probability distribution. Because in the implementation only a finite 
number of points from such sets is available (because of the restricted 
accuracy of real number representation), multiple sampling of a single 
point might occur.

https://github.com/JanTry/PINN_HP
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This motivates us to use the populations (multisets) of collocation 
points that gather clones of elements from 𝛺 and 𝜕𝛺. The population 
of the collocation points in 𝛺 will be represented by the pair 𝑃 =
(𝛺, 𝜂𝑃 ) where 𝜂𝑃 ∶ 𝛺 → N ∪ {0} so that 𝜂𝑃 (𝑥) returns the number of 
clones of 𝑥 ∈ 𝛺 belonging to 𝑃 . The number of clones contained in a 
multiset 𝑃 = (𝛺, 𝜂𝑃 ) can be calculated as follows 

∑

𝑥∈𝑠𝑢𝑝𝑝(𝜂𝑃 ) 𝜂𝑃 (𝑥) while 
𝑠𝑢𝑝𝑝(𝜂𝑃 ) = {𝑥 ∈ 𝛺; 𝜂𝑃 ≠ 0}.

Analogously 𝑃 = (𝜕𝛺, 𝜂𝑃 ), 𝜂𝑃 ∶ 𝜕𝛺 → N ∪ {0} will represent the 
population of boundary collocation points.

Let us now introduce two families of populations that gather a finite 
number of clones 𝜇𝛺 , 𝜇𝜕𝛺 of elements from 𝛺 and 𝜕𝛺 respectively.

𝑈𝛺 = {𝑃 = (𝛺, 𝜂𝑃 ); 𝜂𝑃 ∶ 𝛺 → Z+ ∪ {0};
∑

𝑥∈𝑠𝑢𝑝𝑝(𝜂𝑃 )
𝜂𝑃 (𝑥) = 𝜇𝛺 < +∞},

(6)
𝑈𝜕𝛺 = {𝑃 = (𝜕𝛺, 𝜂𝑃 ); 𝜂𝑃 ∶ 𝜕𝛺 → Z+ ∪ {0};

∑

𝑥∈𝑠𝑢𝑝𝑝(𝜂𝑃 )
𝜂𝑃 (𝑥) = 𝜇𝜕𝛺 < +∞}

(7)

For 𝑃 ∈ 𝑈𝛺, we set the following loss function: 

𝛩 × 𝑈𝛺 ∋ (𝜃, 𝑃 ) → 𝑙𝛺(𝜃, 𝑃 ) =
∑

𝑥∈𝑠𝑢𝑝𝑝(𝜂𝑃 )
𝜂𝑃 (𝑥)(𝑟𝑒𝑠𝛺(𝑔𝜃)(𝑥))2 ∈ R+, (8)

while for 𝑃 ∈ 𝑈𝜕𝛺 the loss function is 

𝛩 × 𝑈𝜕𝛺 ∋ (𝜃, 𝑃 ) → 𝑙𝜕𝛺(𝜃, 𝑃 ) =
∑

𝑥∈𝑠𝑢𝑝𝑝(𝜂𝑃 )
𝜂𝑃 (𝑥)(𝑟𝑒𝑠𝜕𝛺(𝑔𝜃)(𝑥))2 ∈ R+. (9)

Let us denote by 𝐿𝛺 = {𝑙𝛺(⋅, 𝑃 ), 𝑃 ∈ 𝑈𝛺}, 𝐿𝜕𝛺 = {𝑙𝜕𝛺(⋅, 𝑃 ), 𝑃 ∈ 𝑈𝜕𝛺} the 
families of all loss functions associated with the populations of internal 
and boundary points of fixed sizes 𝜇𝛺 and 𝜇𝜕𝛺, respectively. The quality 
of the residual approximation of PINN naturally depends on the choice 
of point populations used to construct the loss functions (8) and (9).

3. Learning PINN with a stochastic adaptation of collocation
points

We will use the polymorphic symbol meas(⋅) of the Lebesgue mea-
sure of the subsets of R𝑛 and R𝑛−1. In particular, meas(𝛺) denotes the 
‘‘volume’’ of the exact solution’s domain and meas(𝜕𝛺) the ‘‘surface’’ of 
its border.

Let us denote by 𝑀(𝛺) and 𝑀(𝜕𝛺) the spaces of probabilistic mea-
sures on 𝛺 and on 𝜕𝛺, respectively. Later, we will handle only measures 
possessing density functions 𝜌𝛺 ∈ 𝐿2(𝛺;R+), 𝜌𝜕𝛺 ∈ 𝐿2(𝜕𝛺;R+).

The draft of the learning algorithm is shown in Listing 1.

1 BEGIN
2 Set 𝜇𝛺 and 𝜇𝜕𝛺 ;
3 Sample 𝑃1 ∈ 𝑈𝛺 using the p robab i l i t y d i s t r i b u t i o n from 𝑀(𝛺)

with the uniform dens i ty 𝜌𝛺 ≡ (meas(𝛺))−1 ∈ 𝐿2(𝛺) ;
4 Sample 𝑃2 ∈ 𝑈𝜕𝛺 using the p robab i l i t y d i s t r i b u t i o n from

𝑀(𝜕𝛺) with the uniform dens i ty 𝜌𝜕𝛺 ≡ (meas(𝜕𝛺))−1 ∈ 𝐿2(𝜕𝛺) ;
5 𝑡 = 0 ;
6 Learn PINN using l o s s funct ion 𝑙𝛺 (⋅, 𝑃1) +

𝑙𝜕𝛺 (⋅, 𝑃2) ge t t i ng f i n a l parameters 𝜃̂ ∈ 𝛩 ;
7 Compute r e s i dua l 𝑟𝑒𝑠𝛺 (𝑔𝜃̂ ) ;
8 Compute r e s i dua l 𝑟𝑒𝑠𝜕𝛺 (𝑔𝜃̂ ) ;
9 𝑃 𝑡

1 = 𝑃1 , 𝑃 𝑡
2 = 𝑃2 , 𝜌𝑡𝛺 = 𝜌𝛺 , 𝜌𝑡𝜕𝛺 = 𝜌𝜕𝛺 , 𝜃̂𝑡 = 𝜃̂ ;

10 WHILE NOT 𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑟𝑒𝑠𝛺 (𝑔𝜃̂𝑡 ), 𝑟𝑒𝑠𝜕𝛺 (𝑔𝜃̂𝑡 ))
11 𝑡 = 𝑡 + 1
12 Compute new dens i ty func t ions 𝜌𝛺 ∈ 𝐿2(𝛺), 𝜌𝜕𝛺 ∈ 𝐿2(𝜕𝛺)
13 Sample 𝑃1 ∈ 𝑈𝛺 using 𝜌𝛺 and 𝑃2 ∈ 𝑈𝜕𝛺 using 𝜌𝜕𝛺
14 Learn PINN using l o s s funct ion 𝑙𝛺 (⋅, 𝑃1) +

𝑙𝜕𝛺 (⋅, 𝑃2) ge t t i ng f i n a l parameters 𝜃̂ ∈ 𝛩 ;
15 Compute r e s i dua l 𝑟𝑒𝑠𝛺 (𝑔𝜃̂ ) ;
16 Compute r e s i dua l 𝑟𝑒𝑠𝜕𝛺 (𝑔𝜃̂ ) ;
17 𝑃 𝑡

1 = 𝑃1 , 𝑃 𝑡
2 = 𝑃2 , 𝜌𝑡𝛺 = 𝜌𝛺 , 𝜌𝑡𝜕𝛺 = 𝜌𝜕𝛺 , 𝜃̂𝑡 = 𝜃̂ ;

18 ENDWHILE
19 END

Listing 1 The algorithm of learning PINN.
3 
The stopping condition of the entire learning procedure in Listing 
1 (line 10) can be defined in multiple ways, depending on the con-
vergence criteria adopted and the practical limitations. A typical and 
representative formulation, as employed in the numerical experiments 
presented, involves verifying whether the global sum of squared resid-
ual norms falls below a prescribed threshold. This criterion ensures 
a quantitatively controlled reduction in the approximation error. In 
practice, the local error within each mesh element is estimated by 
numerically approximating the integral of the residual norm using the 
trapezoidal rule, followed by normalization with respect to the element 
length. This yields an estimate of the mean residual norm in each 
element, facilitating a localized assessment of convergence. The process 
ends when all elements satisfy the designated error tolerance. More-
over, the algorithm must incorporate safeguards for scenarios in which 
further refinement of the finite element mesh is no longer feasible—
either due to reaching a predefined local or global mesh density limit, 
denoted by dense. In such cases, the adaptation procedure is halted 
even if the residual-based criterion is not yet satisfied. The tolerance 
values used in the experimental setup were 10−4 for one-dimensional 
and 10−3 for two-dimensional simulations, respectively.

This strategy generates the sequence of tuples {(𝑃 𝑡
1, 𝑃

𝑡
2 𝜌

𝑡
𝛺 , 𝜌

𝑡
𝜕𝛺 , 𝜃̂

𝑡)},
𝑡 ∈ N ∪ {0}.

Next, we introduce algorithms for implementing pseudocode state-
ments n Listing 1, which leads to an efficient minimization of both 
residual norms ‖𝑟𝑒𝑠𝛺(𝑔𝜃̂𝑡 )‖2,𝛺, ‖𝑟𝑒𝑠𝜕𝛺(𝑔𝜃̂𝑡 )‖2,𝜕𝛺 across consecutive iter-
ations 𝑡 ∈ N ∪ {0}.

4. Details of sampling measure adaptation strategy

4.1. ℎ-FEM based densities

First, we introduce a family of density functions from class 𝐿2(𝛺)
that will be used to sample the collocation points.

Let us consider the decomposition 𝑇coarse = {𝑒1,… , 𝑒𝑁coarse} of 𝛺
that satisfies the conventional conditions of the ℎ -FEM meshes in R𝑛. 
This decomposition 𝑇coarse will be referred to as the starting coarse mesh. 
Next, we introduce the decomposition 𝑇dense = {𝑒1,… , 𝑒𝑁dense}, which 
is ‘‘nested’’ in 𝑇coarse. This means that each element of 𝑇coarse can be 
decomposed into several elements of 𝑇dense. The 𝑇dense decomposition 
might be reached by the ℎ-adaptation strategy specific for the type 
of decomposition and dimension 𝑛 (e.g. the simplistic Voronoi decom-
position or the longest-edge refinement algorithm). The ℎ-adaptation 
procedure produces a sequence of nested mesh decompositions starting 
from 𝑇coarse and finishing at 𝑇dense. Each element of such a chain will 
be nested in its predecessor and, of course, in 𝑇coarse.

The set of intermediate decompositions is partially ordered by the 
ℎ-adaptive algorithm, e.g. 𝑇𝛼 preceded 𝑇𝛽 if 𝑇𝛽 can be obtained from 
𝑇𝛼 by several steps of the ℎ-adaptation procedure. We denote 𝑇𝛼 ≤ 𝑇𝛽
if 𝑇𝛼 ‘‘is nested in’’ 𝑇𝛽 .

We also introduce a boundary 𝜕𝛺 decomposition 𝑇 𝑏, associated 
with the 𝛺 decomposition 𝑇 , such that 𝑇 𝑏 = {𝑒𝑏 = 𝑒∩𝜕𝛺; 𝑒 ∈ 𝑇 ,meas(𝑒∩
𝜕𝛺) > 0}. We assume that the set of boundary decompositions associ-
ated with the nested family of domain decompositions is also partially 
ordered by the ‘‘nested in’’ relation and 𝑇 𝑏𝑑𝑒𝑛𝑠𝑒 is nested in 𝑇 𝑏𝑐𝑜𝑎𝑟𝑠𝑒 and 
all intermediate boundary decompositions, so 𝑇𝛼 ≤ 𝑇𝛽 ⇒ 𝑇 𝑏𝛼 ≤ 𝑇 𝑏𝛽 . 
We refer to [33] for the necessary details concerning FE meshes, their 
topology, and adaptation (refinement and coarsening) methods.

Let 𝑚𝑖 = meas(𝑒𝑖), 𝑒𝑖 ∈ 𝑇 , 𝑖 = 1,… , 𝑁𝑇  for some intermediate mesh 
𝑇 .

We can now introduce the set of densities spanned by the vectors 
𝑑𝑇 = (𝑑1,… , 𝑑𝑁𝑇

); 𝑑𝑖 ≥ 0, 𝑖 = 1,… , 𝑁𝑇 ,
∑

𝑖=1,…,𝑁𝑇

𝑚𝑖 𝑑𝑖 = 1 (10)

Each density under consideration has the form 
𝜌 (𝑥) = 𝑑 if 𝑥 ∈ int(𝑒 ) , 𝑒 ∈ 𝑇 (11)
𝛺 𝑖 𝑖 𝑖
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Such functions are step-wise constant belonging to 𝐿2(𝛺) and well 
defined for almost all 𝑥 ∈ 𝛺 except 𝑥 ∈ 𝜕𝛺 and 𝑥 ∈ 𝜕𝑒𝑖 ∈ 𝑇dense, 𝑖 =
1,… , 𝑁dense.

Analogously, having a boundary decomposition measures 

(𝑚𝑏1,… , 𝑚𝑏𝑁𝑇 𝑏
); 𝑚𝑏𝑖 = meas(𝑒𝑏𝑖) , 𝑒𝑏𝑖 ∈ 𝑇 𝑏 (12)

and a vector of boundary probability densities 

𝑑𝑏𝑇 𝑏 = (𝑑𝑏1,… , 𝑑𝑏𝑁𝑇 𝑏
); 𝑑𝑏𝑖 ≥ 0, 𝑖 = 1,… , 𝑁𝑇 𝑏 ,

∑

𝑖=1,…,𝑁𝑇 𝑏

𝑚𝑏𝑖 𝑑𝑏𝑖 = 1

(13)

we can define the boundary density 

𝜌𝜕𝛺(𝑥) = 𝑑𝑏𝑖 if 𝑥 ∈ int(𝑒𝑏𝑖) , 𝑒𝑏𝑖 ∈ 𝑇 𝑏 (14)

For an arbitrary elements 𝑒 ∈ 𝑇  and 𝑒𝑏 ∈ 𝑇 𝑏 the spaces 𝐿2(𝑒), 𝐿2(𝑒𝑏)
with norms ‖ ⋅ ‖2,𝑒, ‖ ⋅ ‖2,𝑒𝑏 can be used to evaluate residual on 𝑒 ⊂ 𝛺
and 𝑒𝑏 ⊂ 𝜕𝛺.

4.2. Adapting densities

The starting density vector associated with 𝜌0𝛺 will be set to 

𝑑𝑖 = (𝑚𝑖)−1, 𝑖 = 1,… , 𝑁dense , (15)

while 𝜌0𝜕𝛺 will be set to 

𝑑𝑏𝑖 = (𝑚𝑏𝑖)−1, 𝑖 = 1,… , 𝑁𝑏dense . (16)

The consecutive densities 𝜌𝑡𝛺 , 𝜌𝑡𝜕𝛺 will be based on the successive adap-
tations of the initial decomposition 𝑇𝑐𝑜𝑎𝑟𝑠𝑒. The Listing 2 presents the 
adaptation strategy.

1 BEGIN
2 𝑇 = 𝑇𝑐𝑜𝑎𝑟𝑠𝑒
3 compute ‖𝑟𝑒𝑠𝛺 (𝑔𝜃 )|𝑒‖2,𝑒 , 𝑒 ∈ 𝑇
4 WHILE max{‖𝑟𝑒𝑠(𝑔𝜃 )|𝑒‖2,𝑒 , 𝑒 ∈ 𝑇 } > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1
5 compute 𝑇 ′ ; 𝑇𝑑𝑒𝑛𝑠𝑒 ≥ 𝑇 ′ > 𝑇 by breaking a l l elements 𝑒 ∈

𝑇 f o r which ‖𝑟𝑒𝑠(𝑔𝜃 )|𝑒‖2,𝑒 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1
6 𝑇 = 𝑇 ′

7 compute ‖𝑟𝑒𝑠𝛺 (𝑔𝜃 )|𝑒‖2,𝑒 , 𝑒 ∈ 𝑇
8 ENDWHILE
9 compute 𝑇 𝑏
10 se t 𝜌𝛺 according to the formula (11) with 𝑑𝑖 =

‖𝑟𝑒𝑠𝛺 (𝑔𝜃 )|𝑒𝑖‖2,𝑒𝑖
𝑚𝑖

, 𝑖 = 1,… , 𝑁𝑇

11 compute 𝜌𝜕𝛺 according to (14) with 𝑑𝑏𝑖 =
‖𝑟𝑒𝑠𝜕𝛺 (𝑔𝜃 )|𝑒𝑏𝑖‖2,𝑒𝑏𝑖

𝑚𝑏𝑖
, 𝑖 = 1,… , 𝑁𝑇 𝑏

12 sca l e and normalize 𝜌𝛺 and 𝜌𝜕𝛺
13 END

Listing 2: The adaptation algorithm.

The parameter 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 in Listing 2 is a user-defined tolerance 
used to guide mesh refinement. Any element with a normalized resi-
dual — computed via the trapezoidal rule and divided by element size 
— exceeding 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 is marked for refinement. In the numerical 
experiments, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 was set equal to the global stopping tolerances, 
i.e., 10−4 for 1D, and 10−3 for 2D cases. If, in a given iteration, 
the maximum residual is already below this threshold, no refinement 
occurs, but this does not imply convergence. Final convergence is 
determined by the global residual norm after training. Overfitting is 
mitigated by residual normalization and the physics-driven nature of 
the loss function, even in cases with limited quadrature resolution.

4.3. Sampling collocation points

The simple two-phase sampling algorithm of members 𝑃1 ∈ 𝑈𝛺
according to the probability distribution from 𝑀(𝛺) with a density 𝜌𝛺
given by the vector 𝑑  is presented in the Listing 3.
𝑇

4 
1 BEGIN
2 𝑃1 = ∅
3 FOR 𝑒 ∈ 𝑇
4 𝑛𝑒 = 0
5 ENDFOR
6 FOR 𝑖 = 1, 𝜇𝛺
7 using rou le t t e , sample 𝑒 ∈ 𝑇 according to the p robab i l i t y

d i s t r i b u t i o n (𝑑1𝑚1 ,… , 𝑑𝑁𝑇 𝑚𝑁𝑇 )
8 𝑛𝑒 = 𝑛𝑒 + 1
9 ENDFOR
10 FOR 𝑒 ∈ 𝑇
11 FOR 𝑖 = 1, 𝑛𝑒
12 𝑝𝑖 = sample point according to the uniform probab i l i t y

d i s t r i b u t i o n on 𝑒
13 𝑃1 = 𝑃1 ∪ {𝑝𝑖}
14 ENDFOR
15 ENDFOR
16 END

Listing 3: The algorithm for sampling collocation points.

Sampling 𝜇𝜕𝛺 clones to population 𝑃2 ∈ 𝑈𝜕𝛺 according the density 
𝜌𝜕𝛺 will be performed by the analogous algorithm. Additionally:

• In statement 2, 𝑃1 denotes the empty multiset with the zero-
occurrence function.

• The sampling strategy consists of two phases. In the first, we 
sample the number of points in each element of 𝑇  (statements 
6–9). In the second phase, we determine the location of each point 
within the given element.

• Sampling element 𝑒 (statement 7) does not remove this element 
from the set 𝑇 .

• The possible method of sampling the assumed number of points 
𝑑 with a uniform probability distribution over the element 𝑒 ∈ 𝑇
(being a part of 𝛺) or on 𝜕𝑒 ∩ 𝜕𝛺 (being a part of 𝜕𝛺) could be 
performed by the algorithm presented in the Listing 4.

1 BEGIN
2 wrap the element 𝑒 ∈ 𝑇 in to the ‘ ‘ brick ’ ’ 𝐵 = [𝑎, 𝑏]𝑛

3 FOR 𝑘 = 1, 𝑑
4 sample the point 𝑥 from 𝐵 with the uniform

probab i l i t y d i s t r i b u t i o n on 𝐵
5 WHILE 𝑥 ∉ 𝑒
6 sample the point 𝑥 from 𝐵 with the uniform

probab i l i t y d i s t r i b u t i o n on 𝐵
7 ENDWHILE
8 ENDFOR

Listing 4: The algorithm of sampling points inside 
element.

Because of the finite accuracy implementation of real numbers, 
we should also allow sampling collocation points on the walls of the 
elements in 𝑇  and in 𝑇 𝑏, even if it rarely happens.

This procedure, in the case of internal decomposition 𝑇 , starts with 
an arbitrary and unambiguous numbering of all elements 𝑒 ∈ 𝑇 . Let 
us consider sampling in an arbitrary element 𝑒 ∈ 𝑇 . If the collocation 
point was sampled on any wall or vertex of 𝑒, then it will be removed 
if it belongs to 𝜕𝛺 or it belongs to another 𝑒 ∈ 𝑇  with a larger number 
than the ordering number of 𝑒.

The procedure for boundary elements is similar, except that we will 
now only remove points sampled on the common wall with an element 
that has a higher ordering number.

5. The problem of optimal collocation points selection

If we accept all the principles of the proposed stochastic algorithm 
for PINN learning, we are able to formulate the associated problem of 
optimal selection of collocation points:
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Fig. 1. Comparison of the exact solution and the PINN solution for benchmark B1.

Definition 5.1.  Given 𝜇𝛺 , 𝜇𝜕𝛺 , 𝑇𝑐𝑜𝑎𝑟𝑠𝑒 find 𝑃1 ∈ 𝑈𝛺 , 𝑃2 ∈ 𝑈𝜕𝛺 so that 
‖𝑟𝑒𝑠𝛺(𝑔𝜃̂)‖

2
2,𝛺 + ‖𝑟𝑒𝑠𝜕𝛺(𝑔𝜃̂)‖

2
2,𝜕𝛺 ≤ ‖𝑟𝑒𝑠𝛺(𝑔𝜃)‖22,𝛺 + ‖𝑟𝑒𝑠𝜕𝛺(𝑔𝜃)‖22,𝜕𝛺 (17)

where 𝑔𝜃̂ ∈ 𝐺 is learned by using loss function 𝑙𝛺(⋅, 𝑃1) + 𝑙𝜕𝛺(⋅, 𝑃2) and 
𝑔𝜃 ∈ 𝐺 are learned by 𝑙𝛺(⋅, 𝑃1) + 𝑙𝜕𝛺(⋅, 𝑃2) ∀𝑃1 ∈ 𝑈𝛺 , 𝑃2 ∈ 𝑈𝜕𝛺, see (8), 
(9).

Considering once more the implementation of all collocation points 
as a finite number of vectors (because of a restricted accuracy real 
number representation) contained in 𝛺 and 𝜕𝛺, we can also handle the 
implementation of families of populations 𝑈𝛺 and 𝑈𝜕𝛺 as finite sets (see 
e.g. [34]). The learning process mentioned in Definition  5.1 assigns the 
unique value of the objective (sum of the squares of the norms of both 
residuals) to each pair of populations. In consequence, this problem 
admits at least one global minimizer as a result of searching in a finite 
set.

6. Advantages of the proposed framework

The formal analysis of the proposed collocation point selection 
shows the following advantages:

1. Can be applied to an arbitrary dimension 𝑛 of a computational 
domain 𝛺 ⊂ R𝑛, assuming the existence of a proper type of FE 
grid and its adaptation strategy producing the sequence of nested 
meshes.

2. Is transparent with respect to the FE mesh adaptation policy, 
assuming only the existence of a starting ‘‘coarse’’ mesh and a 
final ‘‘dense’’ one, as well as the ‘‘is nested in’’ partial order of 
intermediate meshes; that is, each intermediate mesh 𝑇  satisfies 
𝑇𝑑𝑒𝑛𝑠𝑒 ≤ 𝑇 ≤ 𝑇𝑐𝑜𝑎𝑟𝑠𝑒, where ≤ denotes the ‘‘is nested in’’ relation.

3. As far as the sampling procedure in the first phase is ‘‘propor-
tional’’ to the residual, it allows scaling the density 𝜌𝛺 (also 
dynamically), enlarging ‘‘selection pressure’’ towards elements 
with higher residual.

4. The number of collocation points 𝜇𝛺 is independent of the num-
ber of elements and the training epoch, so it can be dynamically 
changed.

5. The number of collocation points sampled on the boundary 𝜇𝜕𝛺
is independent of the number of points sampled in the interior 
and can be dynamically controlled during iterations.

6. The probability distribution and the method of sampling collo-
cation points inside elements and on their boundaries can be 
changed without changing the overall strategy of assigning the 
number of points in each element or its boundary.
5 
7. The existence of a 𝑇𝑑𝑒𝑛𝑠𝑒 nested in all possible meshes makes the 
natural constraints for the mesh adaptation policy applied. On 
the other hand, it allows for injective mapping of each density 𝜌𝛺
obtained for the intermediate mesh 𝑇 ≤ 𝑇𝑑𝑒𝑛𝑠𝑒 on the final mesh. 
This feature can be utilized by modeling the sampling procedure 
as the Markov process with a finite number of states and the later 
asymptotic analysis.

8. It is easy to observe that if 𝑟𝑒𝑠𝛺(𝑔𝜃)(𝑥) ≠ 0 ∀𝑥 ∈ 𝛺 and 
𝑟𝑒𝑠𝜕𝛺(𝑔𝜃)(𝑥) ≠ 0 ∀𝑥 ∈ 𝜕𝛺, ∀𝑔𝜃 ∈ 𝐺, then both densities 𝜌𝛺
and 𝜌𝜕𝛺 are strictly positive, so the arbitrary populations 𝑃1 ∈
𝑈𝛺 and 𝑃2 ∈ 𝑈𝜕𝛺 can be sampled. Because zero residual may 
occur rarely (practically only once if the exact solution 𝑢 ∈
𝐺), then the populations satisfying (17) might be sampled in 
one step with positive probability. So, the presented algorithm 
falls into the class of asymptotically correct stochastic global 
optimization strategies (see, e.g., [35]). As far as this feature 
does not provide the effective stopping condition of the process 
modifying the collocation points, we are sure that adjusting the 
sampling densities 𝜌𝛺 and 𝜌𝜕𝛺 does not protect the sampling of 
any minimizer with probability one.

7. The schedule of experimental verification

Two benchmarks are used to evaluate the performance and accuracy 
of the proposed algorithms. They serve as a means of validation, allow-
ing us to assess the accuracy of the algorithm. In addition, benchmarks 
test the robustness of algorithms against various difficulties, such as 
steep gradients. They also provide a standardized way to compare 
different algorithms. By applying these benchmarks, we gain insight 
into the behavior of algorithms under various conditions.

The selected benchmarks are elliptic problems and diffusion-conve-
ction problems formulated abstractly across one-dimensional (1D) and 
two-dimensional (2D) domains.

For the elliptic problems, the equation takes the form: 
−∇ (𝑎(𝑥)∇𝑢(𝑥)) = 𝑓 (𝑥), 𝑥 ∈ 𝛺 ⊂ R𝑝, 𝑝 = {1, 2} (18)

All benchmarks use boundary conditions that are either pure Dirichlet 
or a mix of Dirichlet and Neumann conditions. The problem involves 
finding 𝑢 ∈ 𝐶2(𝛺) within a domain 𝛺 ⊂ R𝑝, where 𝑝 = 1, 2, that satisfies 
the proper boundary conditions on 𝜕𝛺. Given a right-hand side (RHS) 
function 𝑓 (𝑥) in 𝐶0(𝛺) and a coefficient 𝑎(𝑥) in 𝐶1(𝛺), the problem is 
well-posed. The uniqueness and regularity of the solutions ensure that 
the benchmarks are reliable for testing the performance of numerical 
algorithms. In (18) where 𝛺 is a domain, 𝑢(𝑥) is the manufactured 
solution, 𝑎(𝑥) is a tensor that characterizes the material properties, and 
𝑓 (𝑥) is the right-hand side.

In elliptic problems, steep gradients near domain edges, particularly 
in 2D cases, can lead to numerical instability. This case can be particu-
larly problematic for the standard PINN algorithm (without collocation 
points adaptation), which may not detect such behavior and fail to 
converge. In our benchmarks with manufactured solutions, we shift 
the edge singularities slightly outside the domain boundaries, resulting 
in a problem without singularities. The gradient near the boundary 
remains very steep and significantly larger than within the domain, 
posing challenges for numerical algorithms to accurately capture these 
abrupt changes.

We select a 𝐶2 function with a singularity as a candidate for the 
benchmark manufactured solution. Then, we choose a benchmark do-
main without singularities but with a boundary positioned close enough 
to the singularity to produce a locally high but finite solution gradient.

The second benchmark, the advection–diffusion problem, is formu-
lated as follows: 
𝜀𝛥𝑢(𝑥) − 𝑏(𝑥)∇𝑢(𝑥) = 𝑓 (𝑥), ∀𝑥 ∈ 𝛺 ⊂ R𝑝, 𝑝 = {1, 2} (19)

where 𝜀 ∈ R+ is the diffusion coefficient, 𝑏 ∈ 𝐶0(𝛺) represents the 
advection vector, and 𝑓 ∈ 𝐶0(𝛺) is the source term.
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Fig. 2. Comparison of the number of epochs (left panel) and the computational time (right panel) required to reach given tolerance. 200 repeated runs were tested for PINN 
without adaptation and with middle point adaptation on an RTX 4070 GPU for benchmark B1.
Table 1
Poison benchmarks details.
 𝛺 BC Manufactured solution 
 B1 (0, 1) 𝑔𝐷 = (𝑥 + 𝜇)0.7 , 𝑥 = 0

𝑔𝑁 = 0.7
(𝑥 + 𝜇)0.3

, 𝑥 = 1

(𝑥 + 𝜇)0.7  

 B2
(

0, 𝜋
2

)

𝑔𝐷 = tan(𝑥 − 𝜇), 𝑥 = 0

𝑔𝑁 = 1
cos2(𝑥 − 𝜇)

, 𝑥 = 𝜋
2

tan(𝑥 − 𝜇)  

 B3 (0, 1)2 𝑔𝐷 = (𝑥 + 𝜇)0.7(𝑦 + 𝜇)0.7 , 𝑥 = 0 ∨ 𝑦 = 0;

𝑔𝑁 =
0.7((𝑥 + 𝜇) + (𝑦 + 𝜇))
((𝑥 + 𝜇)(𝑦 + 𝜇))0.3

, 𝑥 = 1 ∨ 𝑦 = 1

((𝑥 − 𝜇)(𝑦 − 𝜇))0.7  

 B4
(

0, 𝜋
2

)2
𝑔𝐷 = tan(𝑥 − 𝜇) tan(𝑦 − 𝜇), 𝑥 = 0 ∨ 𝑦 = 0

𝑔𝑁 =
tan(𝑦 − 𝜇)
cos2(𝑥 − 𝜇)

+
tan(𝑥 − 𝜇)
cos2(𝑦 − 𝜇)

, 𝑥 = 𝜋
2
∨𝑦 = 𝜋

2

tan(𝑥 + 𝜇) tan(𝑦 + 𝜇)  
Several difficulties arise when solving these benchmark problems, 
particularly for PINN algorithms.

In this problem, the solution exhibits steep gradients for small 𝜀, 
making it challenging to capture the boundary layer without crashing.

7.1. Metrics

We employ a variety of metrics to assess the quality of algorithmic 
performance, appropriate for the stochastic nature of the algorithm. 
Since each run yields different performance results, multiple executions 
are necessary to obtain reliable measures.

The primary metrics we focus on are the average and median 
training time. They are critical in determining whether the algorithm 
performs statistically better across runs. When improvements are ob-
served in both metrics, it can be inferred that the algorithm exhibits 
superior performance.

In addition to time-based metrics, we evaluated the average error 
in the best population of collocation points obtained during the run. 
We also analyze the regression of the 𝐿2(𝛺) error during the run and 
the spatial error distribution across the runs, which provides insights 
into the stability and robustness of the algorithm’s performance. These 
error-based measurements allow us to better understand the accu-
racy and reliability of the algorithm beyond just its speed. Although 
these measurements are briefly formulated, the exact formulas will be 
explained later.

7.2. Benchmarks

We selected a set of benchmarks to rigorously evaluate the algo-
rithm’s performance, each with known analytical solutions, to provide 
a reliable basis for validation.

The Poisson equation with a manufactured solution allows us to 
test the algorithm’s ability to accurately reproduce predefined behavior, 
6 
while the advection–diffusion equation introduces complexity through 
coupled transport and diffusion processes. These equations are widely 
used in numerical analysis, making them well-suited for testing the 
capabilities of different approaches. The details of the benchmark 
problems B1-B4 are described in Table  1.

For each benchmark, we train a Physics-Informed Neural Network 
(PINN) with the same hyperparameters, using both the proposed adap-
tive sampling and a non-adaptive sampling algorithm. Then, the perfor-
mance is evaluated using various metrics. This approach ensures a com-
prehensive assessment of the algorithms’ accuracy and computational 
efficiency. We analyze all the metrics described in 7.1.

Let us define a set of manufactured solutions for both the 1D and 
2D domains. These solutions provide known analytical forms, allowing 
the precise validation of the numerical results.

Problems B1, and B3 are designed to evaluate how well the algo-
rithm can handle power-law behaviors with fractional exponents. The 
𝜇 controls the steepness of the solution near the edge of the domain, 
forcing the algorithm to capture this variation accurately.

The benchmarks B2, and B4 are another type of difficult non-
polynomial RHS. The solution has a steep gradient as 𝜇 → 0, intro-
ducing significant challenges to the algorithm, especially in capturing 
the behavior near the edge of the domain.

8. Benchmark results

We present an evaluation of our proposed numerical method for 
benchmarks B1-B4 and BA, which were defined in the previous section. 
A series of numerical experiments compared PINN with the adaptation 
of the initial guiding mesh 𝑇coarse (Section 4.3) and without adaptation. 
Each experiment consists of repeatedly solving the benchmark problem, 
both with and without adaptation. We then perform a statistical analy-
sis of the resulting metrics. We performed the experiments on a Linux 
workstation equipped with an RTX 4070 GPU with 8 GB of GPU VRAM, 
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Fig. 3. Comparison of error for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B1. Computations were done on RTX 4070 GPU.
Fig. 4. Comparison of convergence for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B1. Computations were done on RTX 4070 GPU.
Fig. 5. Comparison of the exact solution and the PINN solution for benchmark B2.

AMD Ryzen 5 7600X CPU, 32 GB DDR5 6000 MHz CL36 RAM, running 
Ubuntu 20.04 Linux, and Python 3.10.

8.1. 1D Poison equation with manufactured solution of benchmark B1

We performed each experiment 50 times, both with and without 
adaptation, using a tolerance of 10−4 and running 1000 epochs per 
iteration, with a maximum of 1000 iterations per run. Both algorithms 
were tested for 𝜇 = 0.03, and 200 collocation points.

Fig.  1 illustrates the comparison between an exemplary PINN solu-
tion and the exact solution.
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Table 2
Average and median values for the number of epochs and the computational time for 
training PINN with and without adaptation, for benchmark B1.
 Number of epochs Computational time
 Average Median Average Median  
 No adaptation 468723 450000 959.72 s 921.20 s  
 Adaptation 336780 318500 734.78 s 678.99 s  

The results indicate that the average number of epochs required 
for training without adaptation was 468 723, whereas, with adaptation, 
this was reduced to 336 780. Similarly, the median number of epochs 
decreased from 450 000 without adaptation to 318 500 with adapta-
tion. In terms of computational time, the average training duration 
dropped from 959.72 s to 734.78 s with adaptation, while the median 
time decreased from 921.20 s to 678.99 s. A summary of these findings is 
provided in Table  2, and Figs.  2(a) and 2(b) offer detailed comparisons 
of the number of epochs and training times.

Additionally, we analyze representative results for error and resid-
ual convergence in both versions of PINN. For these comparisons, we 
selected runs with exactly 8000 epochs. Fig.  3 shows the error for both 
algorithms. Fig.  4 illustrates the residual behavior, where the adapted 
method shows noticeable spikes in the loss function due to mesh regen-
eration. Fig.  3 reflects the fixed-budget behavior of the loss function, 
rather than the actual stopping point of the training. In practice, the 
loss often meets the target threshold much earlier, particularly in the 
adaptive case, and the method terminates accordingly.

8.2. 1D Poison equation with manufactured solution of benchmark B2

We performed each experiment 100 times, both with and without 
adaptation, using a tolerance of 10−4 and running 1000 epochs per 
iteration, with a maximum of 1000 iterations per run. Both algorithms 
were tested for 𝜇 = 0.3 with 200 collocation points.
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Fig. 6. Comparison of the number of epochs (left panel) and the computational time (right panel) required to reach given tolerance. 200 repeated runs were tested for PINN 
without adaptation and with middle point adaptation on an RTX 4070 GPU for benchmark B2.
Fig. 7. Comparison of error for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B2. Computations were done on RTX 4070 GPU.
Table 3
Average and median values for the number of epochs and the computational time for 
training PINN with and without adaptation, for benchmark B2.
 Number of epochs Computational time
 Avergae Median Average Median  
 No adaptation 241030 158000 517.35 s 342.93 s  
 Adaptation 152640 116500 368.03 s 280.70 s  

Fig.  5 illustrates the comparison between an exemplary PINN solu-
tion and the exact solution.

The results indicate that the average number of epochs required 
for training without adaptation was 241 030, whereas, with adaptation, 
this was reduced to 152 640. Similarly, the median number of epochs 
decreased from 158 000 without adaptation to 116 500 with adapta-
tion. In terms of computational time, the average training duration 
dropped from 517.35 s to 368.03 s with adaptation, while the median 
time decreased from 342.93 s to 280.70 s. A summary of these findings is 
provided in Table  3, and Figs.  6(a) and 6(b) offer detailed comparisons 
of the number of epochs and training times.

Additionally, we analyze representative results for error and resid-
ual convergence in both versions of PINN. For these comparisons, we 
selected runs with exactly 8000 epochs. Fig.  7 shows the error for 
both algorithms. Fig.  8 illustrates the residual behavior, where the 
adapted method shows noticeable spikes in the loss function due to 
mesh regeneration. As observed in Fig.  7, the previously pronounced 
local error near the right boundary has been effectively mitigated. 
Furthermore, the error distribution appears substantially more uniform 
throughout the domain.
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Table 4
Average and median values for the number of epochs and the computational time for 
training PINN with and without adaptation for benchmark BA.
 Number of epochs Computational time
 Average Median Average Median  
 No adaptation 106338 35000 240.51 s 81.89 s  
 Adaptation 18660 17000 49.36 s 45.21 s  

8.3. 1D advection-dominated diffusion benchmark problem BA

We conducted each experiment 200 times, both with and without 
adaptation, setting a tolerance of 10−4 and running 1000 epochs per 
iteration, with a maximum of 1000 iterations per run. It is important 
to note that three cases failed to achieve the desired numerical error 
within 1000 iterations out of the 200 runs without adaptation. Both 
algorithms were tested for 𝜀 = 0.05 with 200 collocation points.

Fig.  9 illustrates the comparison between an exemplary PINN solu-
tion and the exact solution.

The results show that the average number of epochs for training 
without adaptation was 106 338, compared to 18 660 for the adaptation. 
Similarly, the median number of epochs dropped from 35 000 without 
adaptation to 17 000 with adaptation. In terms of computational time, 
the adaptation reduced the average training time from 240.51 s to 
49.36 s, and the median time from 81.89 s to 45.21 s. A summary of 
these results can be found in Table  4, while Figs.  10(a) and 10(b) 
display detailed comparisons of the number of epochs and training 
times, respectively.

Furthermore, we examine exemplary results for error and residual 
convergence in both versions of PINN. For these comparisons, we se-
lected runs with exactly 8000 epochs. Fig.  11 presents the error for both 
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Fig. 8. Comparison of convergence for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B2. Computations were done on RTX 4070 GPU.
Fig. 9. Comparison of exact solution and PINN solution for benchmark BA.

Table 5
Average and median values for the number of epochs and the computational time for 
training PINN with and without adaptation, for benchmark B3.
 Number of epochs Computational time
 Average Median Average Median  
 No adaptation 377686 289000 2472.87 s 1868.11 s  
 Adaptation 74745 69000 513.58 s 476.32 s  

algorithms. With adaptation, the error remains uniformly low across 
the entire domain, oscillating around numerical zero, whereas without 
adaptation, significant errors accumulate near the domain singularity 
on the right. Fig.  12 shows the residual behavior, where the adapted 
method exhibits noticeable spikes in the loss function due to mesh 
regeneration.

8.4. 2D Poison equation with manufactured solution of benchmark B3

We performed each experiment 50 times, both with and without 
adaptation, using a tolerance of 10−3 and running 1000 epochs per 
iteration, with a maximum of 1000 iterations per run. Both algorithms 
were tested for 𝜇 = 0.1 with 40 000 collocation points.

The results indicate that the average number of epochs required 
for training without adaptation was 377 686, whereas, with adaptation, 
this was reduced to 74 745. Similarly, the median number of epochs 
decreased from 289 000 without adaptation to 69 000 with adaptation. 
In terms of computational time, the average training duration dropped 
from 2472.87 s to 513.58 s with adaptation, while the median time 
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Table 6
Average and median values for the number of epochs and the computational time for 
training PINN with and without adaptation, for benchmark B4.
 Number of epochs Computational time
 Average Median Average Median  
 No adaptation 316000 242000 4355.58 s 3350.71 s  
 Adaptation 143457 105000 2020.75 s 1493.72 s  

decreased from 1868.11 s to 476.32 s. Out of 50 runs, training without 
adaptation has not reached the set tolerance five times, while training 
with adaptation has reached the expected tolerance goal every time. A 
summary of these findings is provided in Table  5, and Figs.  13(a) and
13(b) offer detailed comparisons of the number of epochs and training 
times.

Additionally, we analyze representative results for error and resid-
ual convergence in both versions of PINN. For these comparisons, we 
selected runs with exactly 20 000 epochs. Fig.  14 shows the error for 
both algorithms. Fig.  15 illustrates the residual behavior, where the 
adapted method shows noticeable spikes in the loss function due to 
mesh regeneration.

8.5. 2D Poison equation with manufactured solution of benchmark B4

We performed each experiment 35 times, both with and without 
adaptation, using a tolerance of 10−3 and running 1000 epochs per 
iteration, with a maximum of 1000 iterations per run. Both algorithms 
were tested for 𝜇 = 0.5 with 160 000 collocation points.

The results indicate that the average number of epochs required 
for training without adaptation was 316 000, whereas, with adaptation, 
this was reduced to 143 457. Similarly, the median number of epochs 
decreased from 242 000 without adaptation to 105 000 with adapta-
tion. In terms of computational time, the average training duration 
dropped from 4355.58 s to 2020.75 s with adaptation, while the median 
time decreased from 3350.71 s to 1493.72 s. A summary of these find-
ings is provided in Table  6, and Figs.  16(a) and 16(b) offer detailed 
comparisons of the number of epochs and training times.

Additionally, we analyze representative results for error and resid-
ual convergence in both versions of PINN. For these comparisons, we 
selected runs with exactly 20 000 epochs. Fig.  17 shows the error for 
both algorithms. Fig.  18 illustrates the residual behavior, where the 
adapted method shows noticeable spikes in the loss function due to 
mesh regeneration.

8.6. Additional comment on numerical results

The observed reduction in computational time in the adaptive set-
ting, relative to the non-adaptive case, stems from the nature of the 



J. Trynda et al. Journal of Computational Science 91 (2025) 102684 
Fig. 10. Comparison of the number of epochs (left panel) and the computational time (right panel) required to reach given tolerance. 200 repeated runs were tested for PINN 
without adaptation and with middle point adaptation on an RTX 4070 GPU for benchmark BA.
Fig. 11. Comparison of error for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark BA. Computations were done on RTX 4070 GPU.
Fig. 12. Comparison of convergence for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark BA. Computations were done on RTX 4070 GPU.
stopping criterion employed in the numerical experiments. In all sce-
narios, the algorithm is designed to terminate after reaching a pre-
defined accuracy threshold. The adaptive procedure, by dynamically 
refining the placement of collocation points, enables the algorithm 
to reach this accuracy more efficiently, thereby yielding a noticeable 
decrease in total run-time.

The stopping condition is evaluated on the basis of localized error 
estimates across mesh elements. For each element, we approximate the 
residual norm — computed using the trapezoidal rule — and normal-
ize it by the size of the element. This normalization is particularly 
pertinent in the adaptive setting, where the mesh is non-uniform. The 
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accuracy thresholds were set to 10−4 in one-dimensional and 10−3 in 
two-dimensional benchmarks.

The main stopping criterion is reaching a prescribed residual norm 
in the 𝐿2 sense. The 1000 training epochs referenced in the numerical 
examples refer to a fixed number of epochs per adaptation step, not a 
global stopping limit. Overfitting is mitigated by residual-based adap-
tation: collocation points are concentrated in regions with high local 
residuals, ensuring a meaningful and robust reduction of the global 
residual norm across iterations.

It is important to emphasize that the presented numerical results 
were generated under a so-called final accuracy test regime, where 
comparisons are made based on computational cost required to achieve 
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Fig. 13. Comparison of the number of epochs (left panel) and the computational time (right panel) required to reach given tolerance. 200 repeated runs were tested for PINN 
without adaptation and with middle point adaptation on an RTX 4070 GPU for benchmark B3.
Fig. 14. Comparison of error for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B3. Computations were done on RTX 4070 GPU.
Fig. 15. Comparison of convergence for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B3. Computations were done on RTX 4070 GPU.
a common target accuracy, not on absolute error levels at a fixed com-
putational budget. Accordingly, while the adaptive strategy does not 
necessarily produce markedly lower final errors compared to the non-
adaptive method, it achieves the desired precision with significantly 
fewer computational resources and training epochs. This constitutes a 
critical practical advantage.

Nevertheless, it is possible to assess relative accuracy under an alter-
native regime—namely, a final budget test, wherein both adaptive and 
non-adaptive approaches are executed with an identical computational 
budget. In such a setting, one may directly compare the residual norms 
attained by both methods, providing further insight into their relative 
approximation quality. Although such a study is beyond the scope of 
the current manuscript, it could serve as a complementary analysis in 
future work.
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In summary, the contribution of the present work lies primarily in 
the demonstrated computational efficiency and methodological adapt-
ability of the proposed framework, which are especially relevant in 
large-scale or high-dimensional settings where computational resources 
are a limiting factor.

During all benchmark simulations, the weights and biases of the 
PINNs remained within finite bounds, typically in the range [−20, 20]
for weights and [−10, 10] for biases. No numerical overflows occurred, 
which confirms that the training process remained within a compact 
parameter set 𝛩 ⊂ R𝑁𝐺 , thus supporting Hypothesis  4.

The benchmark PDEs are well-posed elliptic or convection–diffusion 
problems with smooth data and classical solutions 𝑢 ∈ 𝐶2(𝛺), validat-
ing Hypothesis  1. Since network architectures use smooth activation 
functions (e.g. tanh), the realizations 𝑔  belong to 𝐶2(𝛺), satisfying 
𝜃



J. Trynda et al. Journal of Computational Science 91 (2025) 102684 
Fig. 16. Comparison of the number of epochs (left panel) and the computational time (right panel) required to reach given tolerance. 200 repeated runs were tested for PINN 
without adaptation and with middle point adaptation on an RTX 4070 GPU for benchmark B4.
Fig. 17. Comparison of error for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B4. Computations were done on RTX 4070 GPU.
Fig. 18. Comparison of convergence for PINN without adaptation (left panel) and with adaptation (right panel) for benchmark B4. Computations were done on RTX 4070 GPU.
Hypothesis  2. The continuity of the mapping 𝜃 ↦ 𝑔𝜃 (Hypothesis  3) 
follows from standard results in neural networks with differentiable 
activations.

9. Conclusions and future work

This paper introduced an adaptive sampling strategy for Physics-
Informed Neural Networks (PINNs) directly inspired by mesh refine-
ment methods in the Finite Element Method community. Rather than 
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fully relying on uniform sampling, the approach refines a coarse guid-
ing mesh by subdividing elements where the residual is large, ensuring 
that the collocation points naturally concentrate in regions that require 
a steeper gradient. Comparisons on a range of 1D and 2D benchmark 
problems indicate faster training and a more robust convergence com-
pared to the nonadaptive approach, particularly in the presence of steep 
gradients or boundary-layer phenomena.

This approach offers several core advantages. It naturally extends 
to arbitrary-dimensional problems when given a suitable guiding mesh 
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and nested adaptation strategy. It remains agnostic to specific mesh 
refinement policies and ensures that collocation densities can be dy-
namically scaled in proportion to local residual. Crucially, the total 
number of collocation points and the number of boundary points are 
decoupled from the mesh size and can be adjusted at any stage. 
The probability distributions for sampling within elements or on their 
boundaries can also be flexibly changed.

The benchmark results confirm the synergy of two seemingly op-
posing aspects: a deterministic ℎ-FEM inspired approach that refines 
collocation points in high-residual regions, balanced by a stochastic 
‘blur’ that smooths out sampling. This strategy significantly reduces 
computational effort, especially compared to versions without adap-
tation. The stochastic ‘smoothing’ of the collocation points allocation 
brings additional advantage, protecting the strategy to omit any global 
minimizer with the probability 1 (see Section 6 item 8).

Future work will focus on aligning mesh refinement with temporal 
evolution in time-dependent problems (e.g., using causal sampling), 
scaling up to three-dimensional domains, and comparing performance 
against methods such as RAR, PDF-based refinement, and R3 sam-
pling. Rigorous theoretical studies will also be essential for establishing 
stronger convergence guarantees.

The strategy can be extended in several ways. First, combining 
it with causal sampling [27] appears promising for time-dependent 
PDEs, ensuring that mesh refinement proceeds in sync with evolving 
solution features. Second, further testing on three-dimensional domains 
and more complex geometries would clarify how mesh-based sampling 
scales with problem dimensionality. Finally, a systematic comparison 
with other adaptive approaches such as RAR [24], PDF-based refine-
ment [25], or R3 sampling [27] could pinpoint performance gains. At 
the same time, rigorous theoretical analyses would establish deeper 
convergence guarantees.

Finally, the proposed residual-driven adaptation mechanism could 
be naturally extended to variational formulations such as Variational 
Physics-Informed Neural Networks (VPINNs) [36], and Robust Varia-
tional Physics-Informed Neural Networks (RVPINNs) [37], where lo-
cal error indicators and element-wise refinement strategies are inher-
ently compatible with our mesh-guided collocation framework. This 
opens a promising direction for further methodological and theoretical 
development.
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