Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/144429
Título: An h-adaptive collocation method for Physics-Informed Neural Networks
Autores/as: Trynda, Jan
Maczuga, Paweł
Oliver, Albert 
García-Castillo, Luis Emilio
Schaefer, Robert
Woźniak, Maciej
Clasificación UNESCO: Investigación
Palabras clave: Advection-Dominated Problems
Almost-Singular Poisson Problems
Physics-Informed Neural Networks
Residual-Based Adaptive Sampling
Fecha de publicación: 2025
Publicación seriada: Journal Of Computational Science
Resumen: Despite their flexibility and success in solving partial differential equations, Physics-Informed Neural Networks (PINNs) often suffer from convergence issues, even failing to converge, particularly in problems with steep gradients or localized features. Several remedies have been suggested to solve this problem, but one of the most promising is the dynamical adaptation of the collocation points. This paper explores a novel adaptive sampling method, of a stochastic nature, based on the Adaptive Mesh Refinement used in the Finite Element Method. The error estimates in our refinement algorithm are based on the value of the residual loss function. We tested our method against a variety of 1D and 2D benchmark problems that exhibit steep gradients near certain boundaries, with promising results.
URI: https://accedacris.ulpgc.es/handle/10553/144429
ISSN: 1877-7503
DOI: 10.1016/j.jocs.2025.102684
Fuente: Journal of Computational Science [ISSN 1877-7503], v. 91(102684), (Octubre 2025)
Colección:Artículos
Adobe PDF (4,21 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.