Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/handle/10553/143355
Título: | Convergence of the R1+ tetrahedra family in iterative Longest Edge Bisection | Autores/as: | Padrón Medina, Miguel Ángel Trujillo Pino, Agustín Rafael Suárez, Jose Pablo |
Clasificación UNESCO: | 330506 Ingeniería civil | Palabras clave: | Longest Edge Bisection Near Equilateral Similarity Classes Tetrahedra |
Fecha de publicación: | 2025 | Publicación seriada: | Mathematics and Computers in Simulation | Resumen: | We study the similarity classes appearing in the iterative Longest Edge Bisection (LEB), of an improved family of nearly equilateral tetrahedra. We focus here on the R1+ family as a generalization of the family mentioned by Adler in Adler (1983). We characterize the finite convergence of similarity classes using the Similarity Classes Longest Edge Bisection (SCLEB) algorithm. We prove that below the bound of 37 similarity classes, a number n≤37 classes are generated where n∈{4,8,9,13,21,37}. Using a tetrahedra sextuple representation and SCLEB, all the generated classes are clearly delimited, thereby improving the results by Adler and others. | URI: | https://accedacris.ulpgc.es/handle/10553/143355 | ISSN: | 0378-4754 | DOI: | 10.1016/j.matcom.2025.06.023 | Fuente: | Mathematics and Computers in Simulation [ISSN 0378-4754],v. 238, p. 555-567, (Julio 2025) |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.