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A B S T R A C T

We study the similarity classes appearing in the iterative Longest Edge Bisection (LEB), of
an improved family of nearly equilateral tetrahedra. We focus here on the 𝑅+

1 family as a
generalization of the family mentioned by Adler in Adler (1983). We characterize the finite
convergence of similarity classes using the Similarity Classes Longest Edge Bisection (SCLEB)
algorithm. We prove that below the bound of 37 similarity classes, a number 𝑛 ≤ 37 classes are
generated where 𝑛 ∈ {4, 8, 9, 13, 21, 37}. Using a tetrahedra sextuple representation and SCLEB,
all the generated classes are clearly delimited, thereby improving the results by Adler and
others.

1. Introduction

The Longest Edge Bisection (LEB) of tetrahedra is the simplest way of subdivision scheme that have been used extensively in
decades for many applications in Numerical Methods. It first selects the longest edge of the tetrahedron, and then its midpoint is
connected to the opposite edge, generating 2 new tetrahedra.

Some attractive properties of the LEB include: easy to implement in a programming language, cheap computational cost, and
the fact that interior angles do not degenerate, [1,2]. Empirical studies suggest that in 3D we obtain quality meshes when LEB is
applied iteratively to any initial mesh, [3,4]. This is a desirable property in finite element applications, [5–7].

However, an important property regarding the LEB remains open. This is the question of whether the iterative application of
the LEB produces a finite or infinite number of similarity classes. Briefly, any pair of tetrahedra are in the same similarity class
if their shapes are equal to each other after any affine transformation. A finite and low number of similarity classes is necessary
for numerical stability in the Finite Element Method, [8]. The main benefit is that the element matrix can be computed only once
for each similarity class of tetrahedra, and then the construction of the stiffness matrix can be performed much faster. It should
be noted, that many subdivision algorithms for tetrahedra have been designed to shorten the number of new generated similarity
classes, and to preserve tetrahedra quality [5,9–11]. However, those algorithms are not purely based on the LEB and, in some cases,
the computer implementation is a bit tricky.

A previous study on similarity classes dates back to Adler in 1983 [12]. Adler conjectured that there exist certain classes of
tetrahedra that produce up to 37 similarity classes when the LEB is iterated. Although he did not provide a proof of his conjecture,
he noted -without proof- that the tetrahedra should have the following properties: (1) all edge lengths are within 5% of each other,
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and (2) the longest edge and the second longest edge are opposite each other. Experimental results and the LEB algorithm presented
in [4] indicate that, in practice, Adler’s statement appears to be valid. Consequently, the iterative LEB for the ‘‘nearly equilateral
tetrahedra’’ produces a finite number 𝑛, with 𝑛 ≤ 37 similarity classes. However, no systematic treatment of the study of similarity
classes can be found so far. Lastly, in [13], Adler’s conjecture is proved, and the bound on the conditions between edge lengths
for the convergence of LEB applied to near equilateral tetrahedra, is improved from 5% to 22.47%. This new family, called the 𝑅+

1
family, is a generalization of the family mentioned by Adler of near equilateral tetrahedra. In [13] the Similarity Classes Longest
Edge Bisection (SCLEB) algorithm is also introduced. This algorithm computes the similarity classes that arise during the iterative
LEB process.

The aim of this paper is to contribute with the systematic study of similarity classes in the LEB. We focus here on the 𝑅+
1 family

as a generalization of the family mentioned by Adler, and characterize the convergence in 37 or less similarity classes in the LEB. We
prove that, for any tetrahedron belonging to 𝑅+

1 , there are 𝑛 classes, 𝑛 ≤ 37, where 𝑛 ∈ {4, 8, 9, 13, 21, 37}. We delimit the subfamilies
of such converging tetrahedra with 𝑛 ≤ 37 using the tetrahedra sextuple representation.

2. Preliminaries

Let us represent a tetrahedron 𝑇 = (𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ) as a sextuple with the square lengths of its 6 edges in a certain order
as explained in [14]. In this way, the position and orientation of a tetrahedron are disregarded, and only its geometric shape is
represented.

For brevity, we will use edges instead of square edges in the remainder of the paper.
Note that, the edges 𝐴𝐵𝐶 form a face, and the opposite edges to 𝐴,𝐵, 𝐶 are 𝐹 ,𝐷,𝐸 respectively. There are 24 different sextuples

to represent the same tetrahedron. We call the normalized sextuple representation of a tetrahedron, as defined in [14], to the sextuple
that places the longest edge as the first value, and its neighboring edge with the longest length as the second value. In the case of
repeated edges, we choose the sextuple that places the highest possible values in the first positions of the sextuple. In this way, the
sextuple of a similarity class always satisfies that 𝐴 ≥ 𝐵,𝐶,𝐷,𝐸, 𝐹 and 𝐵 ≥ 𝐶,𝐷,𝐸.

A similarity class is represented by 𝑘(𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ), assuming that (𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ) is a normalized sextuple representation,
for 𝑘 ∈ R

+ being a scale factor. We can omit the factor 𝑘 and use brackets to represent a similarity class, [𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ], and
parenthesis to represent a single tetrahedron. In this manner, [𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ] = 𝑘(𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ), ∀𝑘 ∈ R

+. For brevity in the
reminder of the paper, we will use classes and similarity classes as equivalent terms. Given 2 tetrahedra, 𝑇1 and 𝑇2, they belong to
the same class if 𝑇1 = 𝑘𝑇2, being 𝑘 ∈ R

+. To denote that a class 𝑇 belongs to a family, say 𝑅+
1 , we use 𝑇 ∈ 𝑅+

1 .
Besides, a sextuple expression will be a sextuple given in the form of linear combination of the edges; e.g., the sextuple

[4𝐹 , 4𝐵, 4𝐵, 4𝐵 − 𝐴, 4𝐵 − 𝐴,𝐴] becomes [8, 4, 4, 2, 2, 2] when 𝐴 = 𝐹 = 2 and 𝐵 = 1.

Definition 1. The Similarity Classes Longest Edge Bisection (SCLEB) of class 𝑇 = [𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ] is defined following these
two-steps [13]:

1. Subdivision of 𝑇 to get:

𝑇1 = [𝐴, 4𝐵, 2𝐵 + 2𝐶 − 𝐴, 2𝐸 + 2𝐷 − 𝐴, 4𝐸, 4𝐹 ] (1)

𝑇2 = [𝐴, 2𝐵 + 2𝐶 − 𝐴, 4𝐶, 4𝐷, 2𝐸 + 2𝐷 − 𝐴, 4𝐹 ] (2)

2. Normalization of 𝑇1 and 𝑇2

Given an input class [𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ], a list of output classes are obtained through the application of the iterative SCLEB to all
of the descendants of the input class. If no new classes are produced after a SCLEB iteration, we say that the input class converges
in a finite number 𝑛 of classes.

Definition 2. The 𝑅+
1 family, as a generalization of the family mentioned by Adler in [12], is the set of classes [A,B,C,D,E,F], such

that 𝐴 ≥ 𝐹 ≥ 𝐵 ≥ 𝐶,𝐷,𝐸, and the ratio between the square of the longest edge 𝐴, and the square of the shortest edge, is less than
or equal to 3

2 .

In [13] it was proved that all the tetrahedra belonging to family 𝑅+
1 converge in 37 or fewer classes. Focusing on the class

𝑇 = [𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ] ∈ 𝑅+
1 family, we will refer to edge 𝐴 (the longest edge) and edge 𝐹 (opposite to 𝐴), as primary edges, and we

will refer to the remaining edges 𝐵,𝐶,𝐷 and 𝐸 as secondary edges. This distinction will play a very significant role in the study of
the conditions for convergence of SCLEB in less than 37 similarity classes, which will be examined in this work.

3. The convergence of 𝑹+
𝟏 in less than 37 classes

We are interested in studying the cases in which SCLEB applied to an arbitrary class 𝑇1 = [𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ] ∈ 𝑅+
1 produces

exactly 37 new classes, and the cases in which it produces a smaller number. In [13] the complete tree of the 37 similarity classes
{𝑇1, 𝑇2,… , 𝑇37} generated in all the iterations of SCLEB is provided. Every class is represented as a linear expression of the original
values 𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 of the initial class.

Fig. 1 shows the first iteration of the SCLEB applied to class 𝑇1. We find that the subdivision by the longest edge generates 2
new similarity classes. On the one hand, we obtain 𝑇2 = [4𝐹 , 4𝐵, 4𝐸, 4𝐻, 4𝐺,𝐴], where 4𝐻 = 2𝐷 + 2𝐸 − 𝐴 and 4𝐺 = 2𝐵 + 2𝐶 − 𝐴
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Fig. 1. First step of SCLEB of 𝑇1 = [𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ].

are the shortest medians of faces 𝐴𝐷𝐸 and 𝐴𝐵𝐶, respectively. On the other hand, we obtain 𝑇3, that has 2 different expressions
depending on whether 𝐶 > 𝐷 or not, with the expressions given by [4𝐹 , 4𝐶, 4𝐷, 4𝐻, 4𝐺,𝐴] or [4𝐹 , 4𝐷, 4𝐶, 4𝐺, 4𝐻,𝐴].

Likewise, we can continue analyzing the expressions for all the classes obtained at each step of SCLEB, up to the eighth iteration,
where all generated classes have already appeared previously, and then the process stops.

In some cases, the expressions of 2 different classes, 𝑇𝑖 and 𝑇𝑗 , may coincide numerically, e.g., the regular tetrahedron class
𝑅 = [𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ] = [1, 1, 1, 1, 1, 1] produces the classes 𝑇2 = [4𝐹 , 4𝐵, 4𝐸, 4𝐻, 4𝐺,𝐴] and 𝑇3 = [4𝐹 , 4𝐷, 4𝐶, 4𝐺, 4𝐻,𝐴], see Fig. 1.
Substituting the edge values of 𝑅 into these classes yields 𝑇2 = 𝑇3 = [4, 4, 4, 3, 3, 1]. Numerically, they are exactly the same class,
although the expressions hold different forms. In this case, only a single new class is generated in the first iteration, instead of 2.
Therefore, in the second iteration, only 1 class will need to be subdivided instead of 2. This will reduce the number of new classes
generated in the subdivision tree, producing less than 37 new classes. In fact, for the case of the regular tetrahedron, we already
know that it produces only 8 classes, [3,13]. This leads us to the following Lemma.

Lemma 1. The SCLEB applied to a class 𝑇1 ∈ 𝑅+
1 converges in less than 37 classes if and only if there exist indices 𝑖, 𝑗 ≤ 37, with 𝑖 ≠ 𝑗,

such that 𝑇𝑖 = 𝑇𝑗 .

Proof. Note that, the only condition for a class 𝑇1 ∈ 𝑅+
1 to produce less than 37 classes, is that at least 2 of the 37 sextuple expressions

produced in the SCLEB coincide numerically. □

3.1. Study of class coincidences in the SCLEB

Firstly, we study the sextuple expression of classes 𝑇2 and 𝑇3, to see what conditions must be held for both to coincide numerically.
Class 𝑇3 is represented by 2 sextuple expressions, depending on the values of 𝐶 and 𝐷, whereas 𝑇2 has a single expression, see Fig.
1.

Let us consider 𝑇2 = [4𝐹 , 4𝐵, 4𝐸, 4𝐻, 4𝐺,𝐴] and 𝑇3 in the case 𝐶 > 𝐷, so 𝑇3 = [4𝐹 , 4𝐶, 4𝐷, 4𝐻, 4𝐺,𝐴]. The first edge for both
classes is 4𝐹 , thus it will always coincide. For the second and third edges to be equal, it must be that 𝐵 = 𝐶 and 𝐷 = 𝐸. The edges
in positions 4, 5, and 6 are the same for both sextuples.

Let us see the case 𝐶 < 𝐷, then 𝑇3 = [4𝐹 , 4𝐷, 4𝐶, 4𝐺, 4𝐻,𝐴]. Again, comparing each edge of sextuple 𝑇2 and 𝑇3, we observe that
for both classes to coincide numerically, it must be that 𝐵 = 𝐷, 𝐶 = 𝐸, and 𝐻 = 𝐺. It can be easily deduced from the expressions
𝐻 and 𝐺 that this last condition follows from the first two. Finally, in the case where 𝐶 = 𝐷, it follows that 𝐻 = 𝐺, which in turn
forces 𝐵 = 𝐸. Therefore, we conclude that 𝑇2 = 𝑇3 if and only if at least 2 out of the 4 secondary edges are equal in pairs.

We can perform a similar analysis for the second iteration, see Fig. 2. Although the cases are considerably more numerous than
in the first iteration, let us study, for example, the comparison between the sextuple expressions of 𝑇4 and 𝑇5, first assuming the
case 𝐽 > 𝐺. Recall that 4𝐽 = 2𝐵 + 2𝐸 − 𝐹 and 4𝐾 = 2𝐶 + 2𝐷 − 𝐹 are the shortest medians of faces 𝐵𝐸𝐹 and 𝐶𝐷𝐹 respectively. In
this case, we conclude that both classes coincide numerically if 𝐵 = 𝐸 and 𝐺 = 𝐻 . The latter condition is equivalent to 𝐶 = 𝐷, and
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Fig. 2. Second step of the SCLEB. Subdivision of 𝑇2 and 𝑇3.

therefore, 𝑇4 = 𝑇5 if 𝐵 = 𝐸 and 𝐶 = 𝐷. In the opposite case, 𝐽 ≤ 𝐺, we would have 𝐵 = 𝐸, 𝐺 = 𝐽 , 𝐴 = 𝐹 and 𝐽 = 𝐻 , which can be
simplified to 𝐴 = 𝐹 and 𝐵 = 𝐶 = 𝐸.

Note that, to fully study the second step in the SCLEB, it is needed to analyze the remaining 5 cases 𝑇4 = 𝑇6, 𝑇4 = 𝑇7, 𝑇5 = 𝑇6,
𝑇5 = 𝑇7 and 𝑇6 = 𝑇7, to see all possible numerical coincidences. However, we should not limit ourselves to comparisons within
the same iteration, since in subsequent iterations, the new similarity classes produced could numerically coincide with classes that
appeared in previous iterations. Thus, we should compare all possible pairs within the 37 similarity classes produced by the SCLEB
of a class in 𝑅+

1 . This gives us a total of
∑𝑛−1

𝑘=1(𝑛 − 𝑘) = 666 cases with 𝑛 = 37.

3.2. Reducing the number of cases to study

To reduce the total number of cases to compare, we take into account the fact that not all 37 generated classes by the SCLEB
can be similar to one another. They can all be grouped into 8 distinct families, making it unnecessary to perform comparisons
between classes from different families. Fig. 3 shows the subdivision graph produced in SCLEB from the regular tetrahedron class,
where the different families appearing in each iteration can be seen. This same subdivision sequence occurs with any class in 𝑅+

1 ,
as demonstrated in [13]. The arrows in Fig. 3 have been colored to indicate the subdivision process: Eq. (1), labeled child #1 is
shown in red, while Eq. (2) labeled child #2 is shown in blue.

In [13], we proved that all classes holding the conditions to belong to the 𝑅+
1 family follow the same subdivision graph. Thus,

let 𝑇1 = [𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ] ∈ 𝑅+
1 with all its edges distinct. The first iteration generates 2 very similar children ∈ 𝑅+

2 but different,
called 𝑇2 (child #1 in red) and 𝑇3 (child #2 in blue). In turn, each of them produces 2 new children 𝑇4, 𝑇5, 𝑇6, 𝑇7 ∈ 𝑅+

3 , giving a
total of 4 new classes in the second iteration. Likewise, 8 different new classes emerge in the third iteration 𝑇8, 𝑇9,… , 𝑇15 ∈ 𝑅+

4 .
The fourth iteration does not produce classes similar to each other. On the one hand, using the child #1 formula, we obtain the

classes 𝑇17, 𝑇19 ∈ 𝑅+
2 . On the other hand, using the child #2 formula, we obtain the classes 𝑇16, 𝑇18, 𝑇20, 𝑇21 ∈ 𝑅+

5 . It should be noted
that there are not 16 new classes in this iteration, because the repeated ones are discarded. From this point, the subdivision process
continues until the eighth iteration, so that all the generated classes have already appeared. In this way, it is possible to identify
the family to which each of the 37 classes belongs.

From this result, it is not necessary to compare all 37 classes with each other, but only those belonging to the same family need to
be compared. Table 1 shows the 37 classes, indicating which family they belong to and in which iteration they have been produced.
In this way, for a family with 𝑚 classes, the number of comparisons required is

∑𝑚−1
𝑘=1 𝑘 = (𝑚−1)𝑚

2 . The number of cases is given by
the sum of the entire right column, thus, a total number of 86 cases must be studied.

3.3. Edge conditions for convergence in less than 37 classes

Proceeding to study these 86 cases in the same manner as in Section 3.1, where the comparison between classes 𝑇2 and 𝑇3 was
performed, we obtained a final set of 9 edge conditions, grouped into three categories, such that at least 2 conditions from the same
category must always hold. Fig. 4 shows the three categories enclosed in grey boxes, each containing three conditions. The value 𝐼

represents the interior segment connecting the midpoints of the 2 primary edges, 𝐴 and 𝐹 , where 4𝐼 = −𝐴 + 𝐵 + 𝐶 +𝐷 + 𝐸 − 𝐹 .
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Fig. 3. The generation graph of the families emerging from the SCLEB of 𝑅1 = [1, 1, 1, 1, 1, 1]. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 1

Similarity classes organized into families to be compared.

Family Iter. Classes Number of classes (m) Cases to compare

𝑅+
1 0 𝑇1 1 0

𝑅+
2 1 𝑇2 , 𝑇3 4 6

4 𝑇17 , 𝑇19
𝑅+

3 2 𝑇4 , 𝑇5 , 𝑇6 , 𝑇7 4 6
5 No new classes generated

𝑅+
4 3 𝑇8 , 𝑇9 , 𝑇10 , 𝑇11 , 𝑇12 , 𝑇13 , 𝑇14 , 𝑇15 8 28

𝑅+
5 4 𝑇16 , 𝑇18 , 𝑇20 , 𝑇21 4 6

𝑅+
6 5 𝑇22 , 𝑇23 , 𝑇24 , 𝑇25 , 𝑇26 , 𝑇27 , 𝑇28 , 𝑇29 8 28

𝑅+
7 6 𝑇30 , 𝑇31 , 𝑇32 , 𝑇33 4 6

𝑅+
8 7 𝑇34 , 𝑇35 , 𝑇36 , 𝑇37 4 6

37 86

Fig. 4. The 9 edge conditions for convergence in less than 37 classes are grouped into three categories.

This result is summarized in the following Lemma.

Lemma 2. Let 𝑇 = [𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ] be a class ∈ 𝑅+
1 . The SCLEB of 𝑇 produces less than 37 classes as long as 1 of the following

conditions holds:

1. At least 2 of the following three equalities: A = 4I, B = E and C = D.

2. At least 2 of the following three equalities: F = 4I, B = C and D = E.

3. At least 2 of the following three equalities: A = F, B = D and C = E.

Proof. We aim to determine all the necessary conditions for a class ∈ 𝑅+
1 to converge in less than 37 classes. From Lemma 1, we

know that this is equivalent to identifying the conditions under which some of the 37 classes coincide numerically. Furthermore,
from Section 3.3 we know that 86 cases need to be analyzed.
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Fig. 5. Generation tree of the Sommerville tetrahedron ST1, converging in 4 classes. Nine conditions are satisfied: 𝐴 = 𝐹 = 4𝐼 and 𝐵 = 𝐶 = 𝐷 = 𝐸.

In Section 3.1, it was proved that the needed conditions for the cases 𝑇2 = 𝑇3 and 𝑇4 = 𝑇5. Using similar reasoning for the
remaining 84 cases, and grouping the necessary conditions in each case, we arrive at the indicated result. □

Thus, for example, the class [10, 8, 8, 7, 7, 10], which satisfies 𝐵 = 𝐶 and 𝐷 = 𝐸, converges in 13 classes, while the class
[9, 7, 7, 7, 6, 9], which satisfies 𝐴 = 𝐹 and 𝐵 = 𝐷, converges in 9 classes. On the other hand, the class [13, 11, 10, 10, 10, 11], despite
having some repeated edges, 𝐶 = 𝐷 = 𝐸 and 𝐵 = 𝐹 , converges in 37 classes because it does not satisfy Lemma 2.

4. Study of the subfamilies that converge in less than 37 classes

Lemma 2 shows the set of minimum conditions that 𝑅+
1 classes must satisfy to converge in less than 37 classes. However,

depending on how many of these conditions hold, the SCLEB will converge to a different number of classes. The more conditions
are satisfied, the fewer classes the SCLEB will produce.

Theorem 1. A class of 𝑅+
1 converges in 𝑛 classes with 𝑛 ∈ {4, 8, 9, 13, 21, 37}.

In the remainder of this section we present a proof of Theorem 1.
Let us define the subfamily 𝑅+

1𝐶𝑛 as the set of 𝑅
+
1 classes that converges in 𝑛 classes. In the following subsections, we study the

different subfamilies.
Here, we recall the expressions to clarify Figs. 5 to 15:

4𝐺 = 2𝐵 + 2𝐶 − 𝐴

4𝐻 = 2𝐷 + 2𝐸 − 𝐴

4𝐽 = 2𝐵 + 2𝐸 − 𝐹

4𝐾 = 2𝐶 + 2𝐷 − 𝐹

4𝐼 = −𝐴 + 𝐵 + 𝐶 +𝐷 + 𝐸 − 𝐹

4𝐿 = 𝐴 + 𝐵 − 𝐶 +𝐷 − 𝐸 + 𝐹

4𝑀 = 𝐴 − 𝐵 + 𝐶 −𝐷 + 𝐸 + 𝐹

(3)

4.1. Subfamily that converges in 4 classes 𝑅+
1𝐶4

This family consists of the classes that simultaneously satisfy 9 conditions of Lemma 2 and Fig. 4. Seven out of 9 conditions
require that the class to be [𝐴,𝐵,𝐵, 𝐵, 𝐵,𝐴], since 𝐴 = 𝐹 and 𝐵 = 𝐶 = 𝐷 = 𝐸. The 2 remaining conditions arise from 𝐴 = 4𝐼 and
𝐹 = 4𝐼 . Given that 4𝐼 = 4𝐵 −2𝐴, the condition 𝐴 = 𝐹 = 4𝐼 implies 3𝐴 = 4𝐵. This produces a single class that fulfills this condition,
[4, 3, 3, 3, 3, 4]. This class is known as the Sommerville tetrahedron ST1, which is relevant in numerical mathematics [15].

Fig. 5 shows the result of the SCLEB for the class [4, 3, 3, 3, 3, 4]. In the first three iterations, a single new class appears in each,
and in the fourth iteration, the class obtained in the first iteration reappears, thus converging in only 4 classes. The convergence
is achieved in three iterations, and in this process, Sommerville’s tetrahedra ST2 and ST3 [15] are also generated. Note that, when
the SCLEB generates 2 equal children, only 1 is shown in the tree.

We remark that this subfamily is composed of only one class.

4.2. Subfamily that converges in 8 classes 𝑅+
1 𝐶8

In the previous subsection, we studied the case that satisfies the 9 conditions of Fig. 4. It is easy to see that no class satisfies exactly
8 conditions: if at least 2 conditions related to the primary edges hold, see top row in Fig. 4, the third one becomes mandatory.
Similarly, if 5 out of the 6 conditions related to the secondary edges hold, see bottom row in Fig. 4, the sixth one also becomes
mandatory.

Focusing on the case that satisfies 7 conditions, 6 of them require 𝐵 = 𝐶 = 𝐷 = 𝐸 for the secondary edges, while the remaining
condition comes from 1 of the 3 conditions related to the primary edges, 𝐴 = 𝐹 , 4𝐼 = 𝐴 or 4𝐼 = 𝐹 . Then, there are four possible
scenarios:

1. The primary edges are equal to each other and also to the secondary edges, so [𝐴,𝐴,𝐴,𝐴,𝐴,𝐴] is the only possible class,
which corresponds to the regular class. The convergence is achieved in 7 iterations, see Fig. 6.
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Fig. 6. Generation tree of the class [𝐴,𝐴,𝐴,𝐴,𝐴,𝐴] converging in 8 classes. Seven conditions are satisfied: 𝐴 = 𝐹 and 𝐵 = 𝐶 = 𝐷 = 𝐸.

Fig. 7. Generation tree of the class [𝐴,𝐵,𝐵, 𝐵, 𝐵,𝐴] converging in 8 classes. Seven conditions are satisfied: 𝐴 = 𝐹 , and 𝐵 = 𝐶 = 𝐷 = 𝐸.

2. The secondary edges are equal to each other but different to the primary edges, so [𝐴,𝐵,𝐵, 𝐵, 𝐵,𝐴] is the generated class.
The convergence is achieved in 7 iterations, see Fig. 7.
At this point, it is interesting to highlight how the Sommerville tetrahedron ST1, already studied in the previous section,
arises from this scenario. In the fourth iteration of Fig. 7, if 4𝐼 = 𝐴 is satisfied, then the 2 generated classes are similar to
each other and to the class generated in the first iteration, thus converging to only 4 classes.

3. The primary edges differ from each other and from the secondary edges, which are equal, so [𝐴,𝐵,𝐵, 𝐵, 𝐵, 𝐹 ] is the generated
class. This class satisfies 6 conditions, and the seventh condition follows from the equations 4𝐼 = 𝐴 or 4𝐼 = 𝐹 . In both cases,
the convergence is achieved in 5 iterations. Fig. 8 shows one such case when 4𝐼 = 𝐴.

4. The last case occurs when the secondary edges are also equal to the primary edge 𝐹 , so [𝐴,𝐵,𝐵, 𝐵, 𝐵, 𝐵] is the produced
class. However, the seventh condition requires 𝐴 = 4𝐼 . The only class that satisfies these conditions is [3, 2, 2, 2, 2, 2], and it
converges in 5 iterations, see Fig. 9.
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Fig. 8. Generation tree of the class [𝐴,𝐵,𝐵, 𝐵, 𝐵, 𝐹 ] with 4𝐼 = 𝐴 converging in 8 classes. Seven conditions are satisfied: 𝐴 = 4𝐼 and 𝐵 = 𝐶 = 𝐷 = 𝐸.

Fig. 9. Generation tree of the class [3, 2, 2, 2, 2, 2] converging in 8 classes. Seven conditions are satisfied: 𝐴 = 4𝐼 , and 𝐵 = 𝐶 = 𝐷 = 𝐸.

Fig. 10. Generation tree of the class [𝐴,𝐵,𝐵, 𝐵,𝐸,𝐴] converging in 9 classes. Six conditions are satisfied: 𝐴 = 𝐹 = 4𝐼 , and 𝐵 = 𝐶 = 𝐷.

4.3. Subfamily that converges in 9 classes 𝑅+
1 𝐶9

These classes satisfy 6 out of 9 conditions. Therefore, the 3 conditions related to the primary edges are held, while the remaining
3 conditions involve secondary edges. Thus, the primary edges are equal to each other and among the secondary edges, 3 out of 4 are
equal. The classes [𝐴,𝐵,𝐵, 𝐵,𝐸,𝐴] and [𝐴,𝐵, 𝐶, 𝐶, 𝐶, 𝐴] belong to this subfamily. Fig. 10 shows the subdivision of [𝐴,𝐵,𝐵, 𝐵,𝐸,𝐴].
The convergence of these classes is achieved in 3 iterations.

4.4. Subfamily that converges in 13 classes 𝑅+
1𝐶13

This subfamily is classified into three scenarios, depending on the number of satisfied conditions: 6, 5 or 3.
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Fig. 11. Generation tree of the class [𝐴,𝐵,𝐵, 𝐵, 𝐵, 𝐵] converging in 13 classes. Six conditions are satisfied: 𝐵 = 𝐶 = 𝐷 = 𝐸 . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Generation tree of the class [𝐴,𝐵, 𝐶, 𝐵, 𝐶, 𝐴] converging in 13 classes. Five conditions are satisfied: 𝐴 = 𝐹 = 4𝐼 , 𝐵 = 𝐷, and 𝐶 = 𝐸. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

1. Only 2 classes satisfy 6 conditions. In these cases, their secondary edges are either equal to each other and to the primary
edge 𝐹 , or equal to each other but not to 𝐹 . Therefore, these classes are as follows [𝐴,𝐵,𝐵, 𝐵, 𝐵, 𝐵] and [𝐴,𝐵,𝐵, 𝐵, 𝐵, 𝐹 ].
Here, it is important to highlight that 4𝐼 ≠ 𝐴 and 𝐹 , otherwise both classes would converge in 8 classes. This means that,
the 6 conditions related to the secondary edges hold. Fig. 11 shows the subdivision of [𝐴,𝐵,𝐵, 𝐵, 𝐵, 𝐵].
At this stage, it is relevant to note that when 16𝐼 = 4𝐴 is satisfied in the fourth iteration, the green and blue light classes
become the same class. This particular case converges in 8 classes, as previously studied in Section 4.2. A similar behavior
occurs for the class [𝐴,𝐵,𝐵, 𝐵, 𝐵, 𝐹 ] when 4𝐼 = 𝐴 or 4𝐼 = 𝐹 , in which case this class also converges in 8 classes.

2. Classes satisfying 5 conditions require that the 3 conditions related to the primary edges hold, while the remaining 2
conditions involve the secondary edges. Thus, these classes are [𝐴,𝐵, 𝐶, 𝐵, 𝐶, 𝐴] and [𝐴,𝐵,𝐵,𝐷,𝐷,𝐴]. The first one converges
in 7 iterations, while the second one converges in 5 iterations. The class [𝐴,𝐵, 𝐶, 𝐵, 𝐶, 𝐴] is shown in Fig. 12.
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Fig. 13. Generation tree of the class [𝐴,𝐴, 𝐶,𝐴, 𝐶, 𝐴] converging in 13 classes. Three conditions are satisfied: 𝐴 = 𝐹 , 𝐵 = 𝐷, and 𝐶 = 𝐸. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

3. For classes satisfying 3 conditions, 1 condition is related to the primary edges, while the remaining 2 conditions involve
the secondary edges. However, these 3 conditions must belong to the same category, see Fig. 4. For example, the class
[𝐴,𝐴, 𝐶,𝐴, 𝐶, 𝐴] which satisfies 𝐴 = 𝐹 , 𝐵 = 𝐷 and 𝐶 = 𝐸, or the class [𝐴,𝐵, 𝐶, 𝐶, 𝐵, 𝐹 ] with 4𝐼 = 𝐴, 𝐵 = 𝐸 and 𝐶 = 𝐷. Fig.
13 illustrates an example.

4.5. Subfamily that converges in 21 classes 𝑅+
1𝐶21

This subfamily has three scenarios depending on how many conditions are satisfied: 4, 3 or 2.

1. Classes that satisfy 4 conditions are obtained in 2 different ways. In the first case, 1 condition is related to the primary edges,
while the remaining 3 conditions involve the secondary edges. This means that 3 out of 4 secondary edges are equal, as in
the classes [𝐴,𝐵, 𝐶, 𝐶, 𝐶, 𝐹 ] or [𝐴,𝐵,𝐵, 𝐵,𝐸,𝐴], see Fig. 14.
In the second case, the 3 conditions related to the primary edges hold, while the remaining condition involves secondary
edges. This means that the primary edges are equal, as well as 2 of the secondary edges, as in the classes [𝐴,𝐵,𝐵,𝐷,𝐸,𝐴] or
[𝐴,𝐵, 𝐶,𝐷, 𝐶,𝐴]. Note that when 4𝐼 = 𝐴, the classes [𝐴,𝐵, 𝐶, 𝐶, 𝐶, 𝐴] and [𝐴,𝐵,𝐵, 𝐵,𝐸,𝐴] converge in 9 classes.

2. Classes satisfying 3 conditions include the condition 4𝐼 = 𝐹 along with 2 additional conditions involving secondary edges.
This means that 2 pairs of secondary edges are equal. Some examples are the classes [𝐴,𝐵,𝐵,𝐷,𝐷, 𝐹 ] and [𝐴,𝐵, 𝐶, 𝐶, 𝐵, 𝐹 ]
with 4𝐼 = 𝐹 , see Fig. 15.

3. Finally, classes satisfying 2 conditions are found in 2 different cases. In the first case, the primary edges are different while
the remaining 2 conditions come from the secondary edges, which implies that 2 pairs of secondary edges must be equal, as
in the classes [𝐴,𝐵,𝐵,𝐷,𝐷, 𝐹 ] or [𝐴,𝐵, 𝐶, 𝐶, 𝐵, 𝐹 ], see Fig. 15. Notice that for this class, if 4𝐼 = 𝐴, it converges in 13 classes.
In the second case, the primary edges are equal and 2 secondary edges are also equal, as in the classes [𝐴,𝐵, 𝐶,𝐷,𝐷,𝐴] and
[𝐴,𝐴, 𝐶,𝐴,𝐸,𝐴].

4.6. Subfamily that converges in 37 classes 𝑅+
1𝐶37

This subfamily includes all other 𝑅+
1 classes that satisfy less than 4 conditions, where each condition falls into a different category

in Fig. 4. This includes the following scenarios:

1. Classes that satisfy 3 conditions where 3 out of 4 secondary edges are equal. These classes are [𝐴,𝐵,𝐵, 𝐵,𝐸, 𝐹 ],
[𝐴,𝐵,𝐵,𝐷,𝐵, 𝐹 ], [𝐴,𝐵, 𝐶, 𝐵, 𝐵, 𝐹 ] and [𝐴,𝐵, 𝐶, 𝐶, 𝐶, 𝐹 ].

2. Classes that satisfy 2 conditions are as follows: [𝐴,𝐵,𝐵,𝐷,𝐸,𝐴], [𝐴,𝐵, 𝐶, 𝐶, 𝐸,𝐴] and [𝐴,𝐵, 𝐶,𝐷,𝐷,𝐴] where only 2 secondary
edges are equal, and the primary edges are identical. Other classes include [𝐴,𝐵, 𝐶,𝐷, 𝐶, 𝐹 ] and [𝐴,𝐵, 𝐶,𝐷,𝐷, 𝐹 ] where 2
secondary edges equal and 4𝐼 = 𝐴 or 4𝐼 = 𝐹 .

3. Classes satisfying 1 condition come from either 2 primary edges being equal, or 2 secondary edges being equal, such as
[𝐴,𝐵, 𝐶,𝐷,𝐸,𝐴] and [𝐴,𝐵, 𝐶,𝐷,𝐷, 𝐹 ].
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Fig. 14. Generation tree of the class [𝐴,𝐵,𝐵, 𝐵,𝐸,𝐴] converging in 21 classes. Four conditions are satisfied: 𝐴 = 𝐹 , and 𝐵 = 𝐶 = 𝐷.

Fig. 15. Generation tree of the class [𝐴,𝐵, 𝐶, 𝐶, 𝐵, 𝐹 ] converging in 21 classes and satisfying 2 conditions, 𝐵 = 𝐸 and 𝐶 = 𝐷.

4. Classes that do not satisfy any condition but have at least 2 equal edges. In this case, the single class that satisfies these
requirements is [𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐵].

5. Finally, classes that do not hold any condition and have all their edges different include [𝐴,𝐵, 𝐶,𝐷,𝐸, 𝐹 ], as demonstrated
in [13].

We also remark that some classes exhibit many edge coincidences, but they still do not satisfy the minimum conditions of Lemma
2 to converge in less than 37 classes. This means that not all edge coincidences are relevant for convergence to a fewer number of
classes. For example, the class [13,11,10,10,10,11] satisfies that 𝐶 = 𝐷 = 𝐸 and 𝐵 = 𝐹 , which implies a high number of coincidences.
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Fig. 16. Number of generated classes by the SCLEB for the 𝑅+
1 class as a function of the number of satisfied conditions.

However, the equality of the 3 secondary edges, 𝐶 = 𝐷 = 𝐸, actually represents 3 conditions, but one in each different category in
Fig. 4. On the other hand, the equality 𝐵 = 𝐹 is not one of the relevant conditions for convergence. Therefore, this class converges
in 37 classes.

Fig. 16 shows the number of generated classes for the 𝑅+
1 family vs. the number of satisfied conditions.

5. Conclusions

The study of similarity classes arising from the LEB applied to tetrahedra is of great importance in the Finite Element Method. The
efficiency of the method depends on the accurate and efficient assembly of the stiffness matrix, since each different similarity class
require time-consuming computations, increasing the computational cost as the number of classes grows and reducing efficiency.

In this paper we study the convergence of the SCLEB in ≤37 classes for 𝑅+
1 , of an improved family of near equilateral tetrahedra.

By applying the sextuple representation of any tetrahedron class, we analyze the conditions that lead to the convergence in
{4, 8, 9, 13, 21, 37} classes. Although the three dimensional nature of tetrahedra makes the study of their geometry and shape
somewhat complicated, we precisely analyze the generated classes by the SCLEB applied iteratively to the tetrahedra subdivision
using clear representations, such as graphs and sextuple trees. Then, we provide a systematic study of the similarity classes in the
LEB for a family of tetrahedra that generalizes the near equilateral family mentioned by Adler [12].

The results of this paper open a series of new challenges regarding the convergence of SCLEB applied to other families of
tetrahedra such as, the families 𝑅+

2 , 𝑅
+
3 ,… , 𝑅+

8 , obtained through the iterative SCLEB process applied to the regular tetrahedron.
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