Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/handle/10553/142626
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Olmos, Neveka M. | en_US |
dc.contributor.author | Gómez Déniz, Emilio | en_US |
dc.contributor.author | Venegas, Osvaldo | en_US |
dc.date.accessioned | 2025-07-14T11:08:46Z | - |
dc.date.available | 2025-07-14T11:08:46Z | - |
dc.date.issued | 2025 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | https://accedacris.ulpgc.es/handle/10553/142626 | - |
dc.description.abstract | We introduced the Gauss hypergeometric Gleser (GHG) distribution, a novel extension of the Gleser (G) distribution that unifies families of Gleser distributions. We studied their representations and some basic properties and showed that the GHG distribution is heavy-tailed. The maximum likelihood method is used for parameter estimation, and the Fisher information matrix derived. We assessed the performance of the maximum likelihood estimators via Monte Carlo simulations. Moreover, we present applications to two data sets in which the GHG distribution shows a better fit than other known distributions. | en_US |
dc.language | eng | en_US |
dc.relation.ispartof | Aims Mathematics | en_US |
dc.source | Aims Mathematics,v. 10 (6), p. 13575-13593, (2025) | en_US |
dc.subject | 5302 Econometría | en_US |
dc.subject.other | Extension | en_US |
dc.subject.other | Mixture | en_US |
dc.subject.other | Order | en_US |
dc.subject.other | Gleser Distribution | en_US |
dc.subject.other | Heavy-Tailed Distribution | en_US |
dc.subject.other | Scale Mixture | en_US |
dc.subject.other | Maximum Likelihood | en_US |
dc.subject.other | Gauss Hypergeometric Function | en_US |
dc.title | The Gauss hypergeometric Gleser distribution with applications to flood peaks exceedance and income data | en_US |
dc.type | info:eu-repo/semantics/Article | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.3934/math.2025611 | en_US |
dc.identifier.scopus | 105008988574 | - |
dc.identifier.isi | 001513358500001 | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.orcid | NO DATA | - |
dc.contributor.authorscopusid | 41961405100 | - |
dc.contributor.authorscopusid | 15724912000 | - |
dc.contributor.authorscopusid | 6506769962 | - |
dc.identifier.eissn | 2473-6988 | - |
dc.description.lastpage | 13593 | en_US |
dc.identifier.issue | 6 | - |
dc.description.firstpage | 13575 | en_US |
dc.relation.volume | 10 | en_US |
dc.investigacion | Ciencias Sociales y Jurídicas | en_US |
dc.type2 | Artículo | en_US |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.contributor.daisngid | No ID | - |
dc.description.numberofpages | 19 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Olmos, NM | - |
dc.contributor.wosstandard | WOS:Gómez-Déniz, E | - |
dc.contributor.wosstandard | WOS:Venegas, O | - |
dc.date.coverdate | 2025 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-ECO | en_US |
dc.description.sjr | 0,456 | |
dc.description.jcr | 1,8 | |
dc.description.sjrq | Q2 | |
dc.description.jcrq | Q1 | |
dc.description.esci | ESCI | |
dc.description.miaricds | 8,2 | |
item.fulltext | Con texto completo | - |
item.grantfulltext | open | - |
crisitem.author.dept | GIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa | - |
crisitem.author.dept | IU de Turismo y Desarrollo Económico Sostenible | - |
crisitem.author.dept | Departamento de Métodos Cuantitativos en Economía y Gestión | - |
crisitem.author.orcid | 0000-0002-5072-7908 | - |
crisitem.author.parentorg | IU de Turismo y Desarrollo Económico Sostenible | - |
crisitem.author.fullName | Gómez Déniz, Emilio | - |
Colección: | Artículos |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.