Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/142626
DC FieldValueLanguage
dc.contributor.authorOlmos, Neveka M.en_US
dc.contributor.authorGómez Déniz, Emilioen_US
dc.contributor.authorVenegas, Osvaldoen_US
dc.date.accessioned2025-07-14T11:08:46Z-
dc.date.available2025-07-14T11:08:46Z-
dc.date.issued2025en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/142626-
dc.description.abstractWe introduced the Gauss hypergeometric Gleser (GHG) distribution, a novel extension of the Gleser (G) distribution that unifies families of Gleser distributions. We studied their representations and some basic properties and showed that the GHG distribution is heavy-tailed. The maximum likelihood method is used for parameter estimation, and the Fisher information matrix derived. We assessed the performance of the maximum likelihood estimators via Monte Carlo simulations. Moreover, we present applications to two data sets in which the GHG distribution shows a better fit than other known distributions.en_US
dc.languageengen_US
dc.relation.ispartofAims Mathematicsen_US
dc.sourceAims Mathematics,v. 10 (6), p. 13575-13593, (2025)en_US
dc.subject5302 Econometríaen_US
dc.subject.otherExtensionen_US
dc.subject.otherMixtureen_US
dc.subject.otherOrderen_US
dc.subject.otherGleser Distributionen_US
dc.subject.otherHeavy-Tailed Distributionen_US
dc.subject.otherScale Mixtureen_US
dc.subject.otherMaximum Likelihooden_US
dc.subject.otherGauss Hypergeometric Functionen_US
dc.titleThe Gauss hypergeometric Gleser distribution with applications to flood peaks exceedance and income dataen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3934/math.2025611en_US
dc.identifier.scopus105008988574-
dc.identifier.isi001513358500001-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid41961405100-
dc.contributor.authorscopusid15724912000-
dc.contributor.authorscopusid6506769962-
dc.identifier.eissn2473-6988-
dc.description.lastpage13593en_US
dc.identifier.issue6-
dc.description.firstpage13575en_US
dc.relation.volume10en_US
dc.investigacionCiencias Sociales y Jurídicasen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages19en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Olmos, NM-
dc.contributor.wosstandardWOS:Gómez-Déniz, E-
dc.contributor.wosstandardWOS:Venegas, O-
dc.date.coverdate2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-ECOen_US
dc.description.sjr0,456
dc.description.jcr1,8
dc.description.sjrqQ2
dc.description.jcrqQ1
dc.description.esciESCI
dc.description.miaricds8,2
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR TIDES- Técnicas estadísticas bayesianas y de decisión en la economía y empresa-
crisitem.author.deptIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.deptDepartamento de Métodos Cuantitativos en Economía y Gestión-
crisitem.author.orcid0000-0002-5072-7908-
crisitem.author.parentorgIU de Turismo y Desarrollo Económico Sostenible-
crisitem.author.fullNameGómez Déniz, Emilio-
Appears in Collections:Artículos
Adobe PDF (1,22 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.