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1. Introduction

Distributions with heavy right tail are commonly used to model data in various areas of knowledge
in which extreme observations generally occur, including environmental studies, geosciences,
hydrology, actuarial sciences, economics, finance, product reliability assessment, and income
distribution analysis. These datasets tend to be positive with positive asymmetry and heavy right
tail (see [1]). Distributions with positive support and these characteristics are usually used to model
such data. Areas where heavy-tailed distributions are applicable include engineering, physics, and
finance; for other fields, we refer the reader to [2] and its references.
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A frequently used distribution in statistical modeling is the Pareto model (see book by Arnold [3]),
named after economist Vilfredo Pareto. A random variable X follows a Pareto distribution when its
probability density function (pdf) is given by:

fX(x;α, β) =
βαβ

xβ+1 , x ≥ α, (1.1)

where α > 0 is the scale parameter and β > 0 the shape parameter. We denote this by X ∼ Pareto(α, β).
The corresponding cumulative distribution function (cdf) is:

FX(x;α, β) = 1 −
(
α

x

)β
, x ≥ α. (1.2)

Johnson et al. [4] classify several types of Pareto distributions, referring to the above model as Pareto
Type I. Beyond this standard form, various extensions have been proposed in the literature. For
instance, Pickands [5] examines the generalized Pareto distribution for making statistical inferences
about the upper tail of a distribution. Choulakian and Stephens [6] develop goodness-of-fit tests for
this generalized model, while Davison and Smith [7] apply it to hydrological data, analyzing river-flow
exceedances over 35 years.

As a further extension, Gupta et al. [8] introduce a family of distributions by raising any positive
support CDF to a positive power. A special case arises when using the Pareto cdf (1.2), leading to the
exponentiated Pareto (EP) distribution. A random variable X follows an EP distribution if its pdf is
defined as:

fX(x;α, β, γ) =
βγαβ

xβ+1

(
1 −

(
α

x

)β)γ−1

, x ≥ α, (1.3)

where α > 0 is the scale parameter and β, γ > 0 are the shape parameters. This model, denoted
X ∼ EP(α, β, γ), was first studied by Stoppa [9] (see also [10]), and is a particular case of the family
studied by Gupta et al. [8]. Another generalization is the beta-Pareto distribution introduced by
Akinsete et al. [11], and Boumaraf et al. [12] perform several optimization methods on the beta-Pareto
distribution. For a comprehensive review of Pareto models (see Arnold’s book [3]).

Andrews and Mallows [13] conducted research on normal distribution scale mixtures, resulting
in the creation of a class of heavy-tailed distributions (including notable examples like Student’s
t-distribution). These distribution families are extensively applied in robust statistical analysis for
symmetrical datasets.

A scale mixture distribution is formed by combining a base probability density with a scaling
distribution. The mathematical representation of this mixture takes the form:

fZ(z) =
∫

fZ|U=u(z; κ(u)) fU(u)du,

where fZ|U=u is the conditional distribution of the random variable Z given U = u, while κ(u) represents
a positive function of the random variable U with density function fU , which influences the scale
of the random variable Z. A particularly noteworthy case is the Slash distribution (see [4]), where
Z|U = u ∼ N(0, κ(u)), U ∼ Uni f orm(0, 1) and κ(u) = u1/q. This family’s theoretical properties,
inferential methods, and extensions have been extensively studied by Rogers and Tukey [14] and
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Mosteller and Tukey [15], while maximum likelihood (ML) estimation of its location and scale
parameters are addressed in [16–18]. The same idea has been applied when the conditional distribution
is with positive support, for example, to extend the Birnbaum-Saunders distribution (see [19]), and to
extend the generalized half-normal distribution (see [20]).

The beta function (B) plays a fundamental role in this paper. It is defined as:

B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt =

∫ ∞

0

ta−1

(1 + t)a+b dt =
Γ(a)Γ(b)
Γ(a + b)

, (1.4)

where a > 0, b > 0, and Γ(·) denotes the gamma function. A random variable Y follows a beta
distribution with parameters a and b if its pdf is given by:

fY(y; a, b) =
1

B(a, b)
ya−1(1 − y)b−1, 0 < y < 1, (1.5)

where a > 0 and b > 0.
The incomplete beta function, denoted by B(y; a, b), is defined as:

B(y; a, b) =
∫ y

0
ta−1(1 − t)b−1dt, 0 < y < 1, (1.6)

where a > 0 and b > 0. A related function is the regularized incomplete beta function, Iy(a, b),
expressed as Iy(a, b) = B(y; a, b)/B(a, b).

Also used in this paper is the Gauss hypergeometric function (see [21]); it is denoted by 2F1, and is
given by

2F1(a, b, c; x) =
Γ(c)

Γ(b)Γ(c − b)

∫ 1

0
vb−1(1 − v)c−b−1(1 − xv)−adv, (1.7)

where a, b, c > 0 and c > b.
Lerch transcendent function (Φ), is also used in this paper, and can be expressed as:

Φ(−z, s, a) =
1
Γ(s)

∫ 1

0

xa−1 logs−1
(

1
x

)
1 + zx

dx, (1.8)

where a > 0, s > 0 and z > −1.
A random variable X follows a G distribution with parameters σ and α when its density function is

expressed as:

fX(x;σ, α) =
σαx−α

B(α, α)(σ + x)
, x > 0, (1.9)

with scale parameter σ > 0, shape parameter 0 < α < 1, and α = 1 − α. The notation X ∼ G(σ, α)
indicates this distribution, which possesses these key characteristics:

a) The G distribution is unimodal, its mode located at zero.
b) For Y ∼ Beta(1 − α, α), the transformed variable σY

1−Y follows a G(σ, α) distribution.
c) The cdf of X is expressed as:

FX(x;σ, α) = Iy (α, α) , x > 0, (1.10)

where y = x
σ+x and Iy(·, ·) is the regularised incomplete beta function.
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This distribution was first introduced by Gleser [22] and later studied by Olmos et al. [23]. More
recently, Olmos et al. [24] proposed a scale mixture of the G and Beta distributions, naming it scale
mixture of Gleser (SMG) distribution. They show that the SMG distribution exhibits a heavy right tail,
making it a viable alternative to other heavy-tailed distributions such as the Pareto distribution.

A random variable X follows a SMG distribution with parameters σ and α when its density
function is:

fX(x;σ, α) =
ασα

B(α, α)
x−(α+1) log

(
1 +

x
σ

)
, x > 0, (1.11)

where σ > 0 represents the scale parameter and 0 < α < 1 the shape parameter. We denote this by
X ∼ S MG(σ, α).

The main motivation of this work is to extend the study of the G distribution by pursuing the
following objectives. First, we aim to introduce the GHG distribution, generated from a scale mixture
of the G and Beta distributions, similar to how the SMG distribution was derived. Notably, both the
SMG and G distributions emerge as special cases of the GHG distribution. Second, we conduct a
comprehensive study of the GHG distribution, demonstrating its applicability as an alternative model
for actuarial data (e.g., insurance claims, income, and expenses) and hydrological data (e.g., flood peak
exceedances), among other fields.

The article is organized as follows: In Section 2, we give a representation and the density of the
extension of the G distribution, and its basic properties. In Section 3, we carry out an inference by
the ML method, with a simulation study and the Fisher information matrix. Section 4 contains two
applications to real data. In Section 5, we offer some conclusions.

2. New density and properties

In this section, we present the mathematical representation, pdf, key properties, and graphical
illustrations of the GHG distribution.

2.1. Density function

The pdf of the GHG distribution is formally defined below, including several special cases.

Definition 2.1. Let Z ∼ GHG(σ, α, β). Then, the pdf of Z is given by

fZ(z;σ, α, β) =
βB(α + β, 1)
σαB(α, α)

z−α 2F1

(
1, α + β, α + β + 1;−

z
σ

)
, z > 0, (2.1)

where σ > 0 represents the scale parameter, 0 < α < 1 and β > 0 are shape parameters and 2F1 is the
Gauss hypergeometric function.

Remark 1. It is verified as the following:

(1) If β < α, then the GHG distribution can be written as

fZ(z;σ, α, β) =
βσβz−(β+1)

B(α, α)
B

( z
σ + z

, α + β, α − β
)
, z > 0. (2.2)
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(2) If β = α, the SMG(σ, α) distribution is obtained, introduced by Olmos et al. [24].
(3) If z

σ
< 1 y using the Lerch transcendent function we obtain

fZ(z;σ, α, β) =
βσ−αz−α

B(α, α)
Φ

(
−

z
σ
, 1, α + β

)
, z > 0. (2.3)

Figure 1 displays the density plots of the GHG distribution for σ = 1, α = 0.5 and two values of β,
while Table 1 presents the values of P(Z > z) for various values of z in the distributions mentioned. It
can be seen that the right tail of the GHG distribution is heavier as the value of parameter β decreases.
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Figure 1. Examples of the GHG(1, 0.5, β).

Table 1. Tails comparison for different GHG distributions.

Distribution P(Z > 4) P(Z > 5) P(Z > 6)
GHG(1,0.5,1) 0.437 0.406 0.381
GHG(1,0.5,3) 0.341 0.311 0.288
GHG(1,0.5,10) 0.308 0.280 0.258

2.2. Properties

In this subsection, we show some properties of the GHG distribution.

Proposition 2.1. Let Z|U = u ∼ G(σu−1, α) and U ∼ Beta(β, 1) then Z ∼ GHG(σ, α, β).

Proof. Proceeding straight to the integral calculation, we obtain:

fZ(z;σ, α, β) =
∫ 1

0
fZ|U(z) fU(u)du =

∫ 1

0

(σu−1)αz−α

B(α, α)(σu−1 + z)
βuβ−1du =

βz−α

B(α, α)σα

∫ 1

0

uβ−α

1 + z
σ

u
du.

The result follows from applying (1.7). □
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Proposition 2.2. Let X ∼ G(1, α) and Y ∼ Beta(β, 1) be independent random variables. Then, Z =
σX

Y ∼ GHG(σ, α, β).

Proof. Using the stochastic representation Z = σX
Y and applying the Jacobian transformation, we

obtain the desired distribution. □

Proposition 2.3. Let Z ∼ GHG(σ, α, β). If β → ∞ then Z converges in law to a random variable
Z ∼ G(σ, α).

Proof. Let Z ∼ GHG(σ, α, β). Then, by the representation given in Proposition 2.2, we have that
Z = σX

Y . First, we study the probability convergence of Y .
When Y ∼ Beta(β, 1), we have that E[(Y−1)2] = 2

(β+1)(β+2) , if β→ ∞, then E[(Y−1)2] = 2
(β+1)(β+2) →

0; this implies that Y
P
→ 1. Applying Slutsky’s Lemma (see the book by Lehmann [25]), we obtain the

result. □

Remark 2. The result of Proposition 2.1 shows that this distribution arises from a scale mixture of the
G and Beta distributions, while Proposition 2.3 indicates that when β → ∞ in the GHG distribution,
the G distribution is obtained. Figure 2 shows the relationship between the three distributions; we
observe that the GHG distribution contains the SMG and G distributions as particular cases.

GHG(σ, α, β)

β→∞

!!

β=α

||
SMG(σ, α) G(σ, α)

Figure 2. Particular cases for the GHG distribution.

Proposition 2.4. Let Z ∼ GHG(σ, α, β). Then, the cdf of Z is given by

FZ(z;σ, α, β) = Iy (α, α) −
z
β

fZ(z;σ, α, β), z > 0, (2.4)

where σ > 0, 0 < α < 1, β > 0, y = z
σ+z and Iy( , ) is the regularised incomplete beta function.

Proof. Applying the definition of the cdf directly, we obtain

FZ(z;σ, α, β) = βB(α+β,1)
σαB(α,α)

∫ z

0
t−α 2F1

(
1, α + β, α + β + 1;−

t
σ

)
dt,

=
β

σαB(α,α)

∫ z

0
t−α

∫ 1

0

vα+β−1

1 + tv
σ

dvdt,

=
β

B(α,α)

∫ 1

0
vβ−1

(∫ vz
σ

0

w−α

1 + w
dw

)
dv.

Hence by integrating by parts and considering u =
∫ vz

σ

0
w−α
1+wdw, we obtain the result. □
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Corollary 2.1. Let Z ∼ GHG(σ, α, β), the survival function FX(t) defined by FX(t) = 1−FX(t), is given
by

FZ(t;σ, α, β) = 1 − Iy (α, α) +
t
β

fZ(t;σ, α, β).

The hazard function h(t), is defined by h(t) = fX(t)
FX(t)

, for a random variable GHG is given by

h(t;σ, α, β) =
fZ(t;σ, α, β)

1 − Iy (α, α) + t
β

fZ(t;σ, α, β)
, t > 0,

where y = t
σ+t .

Figure 3 displays the hazard rate function’s behavior for varying β parameters, with σ fixed at 1 and
α at 0.5.
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Figure 3. Plots of the hazard function h(t) for β = 1, 3, 10.

In the simulation study and in parameter estimation by the ML method, we considered the GHG
distribution with only two parameters, i.e., modifying Proposition 2.1 as follows: Z|U = u ∼ G(u−1, α)
and U ∼ Beta(β, 1), and the following pdf of the random variable Z is the result.

fZ(z; β, α) =
βB(α + β, 1)

B(α, α)
z−α 2F1 (1, α + β, α + β + 1;−z) , z > 0, (2.5)

where β > 0 and 0 < α < 1 are shape parameters. This reduction in the parametric space aims to
obtain a two-parameter distribution that serves as an alternative to the Pareto distribution and other
two-parameter heavy right-tailed distributions. The random variable U considers parameter β, which
influences the scale in the G distribution since it is where the mixing takes place. When including
parameter σ, we observe that it can lead to an overestimation of β for small sample sizes.

For generating random numbers from the GHG model, two approaches are available: Algorithm 1
uses Proposition 2.1 and the composition method (see [26]), whereas Algorithm 2 employs the
representation from Proposition 2.2.
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Algorithm 1 Simulates Z ∼ GHG(β, α) as follows:
Step 1: Generate U ∼ Beta(β, 1)
Step 2: Compute Z|U = u ∼ G

(
u−1, α

)
Algorithm 2 Simulates Z ∼ GHG(β, α) as follows:

Step 1: Generate V ∼ Beta(1 − α, α)
Step 2: Compute X = V

1−V
Step 3: Generate Y ∼ Beta(β, 1)
Step 4: Compute Z = X

Y

Proposition 2.5. Let T ∼ GHG(β, α). Then, the hazard function of T is decreasing for all t > 0.

Proof. Applying item b) of Glaser’s Theorem [27], we defined the function:

η(t) = −
f ′(t)
f (t)
=
α

t
+

(
α + β

α + β + 1

)
2F1 (2, α + β + 1, α + β + 2;−t) ,

where f (t) is the pdf given in (2.5). Their first derivative and sign are:

η′(t) = −
(
α

t2 + 2
(

α + β

α + β + 2

)
2F1 (3, α + β + 2, α + β + 3;−t)

)
< 0, ∀t > 0.

This completes the proof by Glaser’s Theorem. □

The following Proposition shows that no moments exist for the GHG distribution; this is quite
common in heavy-tailed distributions.

Proposition 2.6. For the random variable Z ∼ GHG(β, α), the r-th moments does not exist when r ≥ α.

Proof. We begin with the change of variable t = zw and apply integrating by parts with u =
∫ z

0
tβ−α
1+t dt.

This yields:

E(Zr) =
β

B(α, α)

∫ ∞

0
zr−α

∫ 1

0

wβ−α

1 + zw
dwdz =

β

B(α, α)

∫ ∞

0
zr−β−1

∫ z

0

tβ−α

1 + t
dtdz

=
zr−β

r − β

∫ z

0

tβ−α

1 + t
dt

∣∣∣∣∣∣∞
0

−
1

r − β

∫ ∞

0

zr−α

1 + z
dz.

The left-hand side expression vanishes for r < β and does not exist when r ≥ β. As demonstrated
in Proposition 1(e) of Olmos et al. [23], the right-hand integral diverges. Consequently, the expression
diverges, proving that the r-th moments of Z ∼ GHG(β, α) do not exist. □

Remark 3. By Proposition 2.2, the existence of the r-th moment of Z reduces to that of X, which does
not exist (see Olmos et al. [23]).
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2.3. Tail of the distribution

In approximate terms, heavy-tailed distributions are those whose tails decay at a slower than
exponential rate. The exponential distribution is regarded as the limit between heavy and light tails.
In the areas of knowledge where they are applied, for example in finance and actuarial sciences, the
data are positive and have a heavy right tail. The Pareto distribution has been widely used to model
financial datasets, but in many cases, it does not provide a good fit. New distributions with heavy right
tail are therefore of interest. Such models are crucial for representing losses in insurance, reinsurance,
and catastrophic risk. Formally, a distribution of probability with cdf F(x), on the real line, is said to
have a heavy right tail (see [28]) if lim sup

x→∞
(− log(FX(x))/x) = 0.

Regular variation theory plays a fundamental role in extreme value analysis (see for example [29–
32], etc.). This concept is formalized as follows:

Definition 2.2. A distribution function is called regular varying at infinity with index −β (where β ≥ 0)
if:

lim
x→∞

FX(tx)

FX(x)
= t−β.

Here, β is termed the tail index.

The GHG distribution exhibits this important property:

Proposition 2.7. The survival function of Z ∼ GHG(β, α), has regularly varying tails.

Proof. Applying the above definition and L’Hospital’s Rule, we have that

lim
z→∞

FZ(tz)

FZ(z)
= lim

z→∞

1 − F(tz)
1 − F(z)

= t−α+1 lim
z→∞

∫ 1

0
wβ−α

1+tzwdw∫ 1

0
wβ−α

1+zwdw
= t−β lim

z→∞

∫ tz

0
uβ−α
1+u du∫ z

0
uβ−α
1+u du

= t−β,

and taking into account that β > 0 the result follows. □

As the GHG distribution is of regularly varying tails, it is therefore heavy-tailed (see [29]).

3. Inference

In this section, we describe ML estimation for the GHG model and include a simulation study
assessing the ML estimators’ behavior.

3.1. ML estimation

Let z1, . . . , zn be a random sample from the GHG(β, α) distribution. The log-likelihood is given by:

ℓ(β, α) = c(β, α) − α
n∑

i=1

log(zi) +
n∑

i=1

log ( 2F1 (1, α + β, α + β + 1;−zi)) , (3.1)

where c(β, α) = n log(β) − n log(α + β) − n log(Γ(α)) − n log(Γ(α)).
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By equating the first partial derivatives (w.r.t. each parameter) to zero, we obtain the following system
of equations:

(α + β)
n∑

i=1

Φ (−zi, 2, α + β)

2F1 (1, α + β, α + β + 1;−zi)
=

n
β
, (3.2)

(α + β)
n∑

i=1

Φ (−zi, 2, α + β)

2F1 (1, α + β, α + β + 1;−zi)
−

n∑
i=1

log(zi) + nψ(α) = nψ(α), (3.3)

where ψ(·) is the digamma function. From (3.2) and (3.3) we derive:

β̂(α̂) =
n∑n

i=1 log(zi) + nψ(α̂) − nψ(1 − α̂)
. (3.4)

The ML estimator for α (α̂) is obtained by numerically solving:

(1 − α̂ + β̂(α̂))
n∑

i=1

Φ
(
−zi, 2, 1 − α̂ + β̂(α̂)

)
2F1

(
1, 1 − α̂ + β̂(α̂), 2 − α̂ + β̂(α̂);−zi

) = n
β̂(α̂)

, (3.5)

The estimator α̂ corresponds to the solution of Eq (3.5), which when substituted into (3.4) yields
β̂. Equation (3.5) can be solved using numerical methods such as the Newton-Raphson algorithm.
Alternatively, both estimates can be obtained by directly maximizing the log-likelihood surface defined
in (3.1) using the optim subroutine in the R software package [33].

3.2. Fisher’s information matrix

For a random variable Z ∼ GHG(β, α), the log-likelihood function corresponding to a single
observation z of Z and parameter vector θ = (β, α) is expressed as:

ℓ(θ) = log(β) − log(α + β) − log(B(α, α)) − α log(z) + log ( 2F1 (1, α + β, α + β + 1;−z)) .

The Appendix contains derivations of both first and second partial derivatives of this log-likelihood
function. The Fisher information matrix, denoted IF(·), for the G distribution takes the form:

IF(θ)=
( 1

β2 − 2η31 + η22 2η31 − η22

2η31 − η22 ψ′(α) + ψ′(α) − η31 + η22

)
,

where ψ′(·) is the trigamma function and ηi j = E
(

κ0Φ(−Z,i,κ0)
2F1(1,κ0,κ1;−Z)

) j
are calculated numerically.

For large samples, the ML estimator θ̂ is asymptotically normal bivariate:

√
n
(̂
θ − θ

) L
−→ N2(0, IF(θ)−1).

Consequently, the asymptotic variance of θ̂ equals the inverse of IF(θ). In practice, since the parameters
are typically unknown, we employ the observed information matrix with ML-estimated parameters.
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3.3. Simulation study

To examine the behavior of estimation by ML, we conducted a simulation study to assess the
performance of the estimation method for the β and α parameters of the GHG distribution. Using
Algorithm 2 given in Subsection 2.2 to generate random numbers from the GHG distribution, the
simulation analysis was performed by generating 1000 samples of sizes n = 20, 100 and 300 from
the GHG distribution. Table 2 shows the empirical bias (Bias), medium bias (MBias), mean of the
standard errors (SE), and root of the empirical mean squared error (RMSE). As shown in Table 2, the
estimation performance improves as n increases.

Table 2. Bias, MBias, SE, and RMSE for the estimators of α and β.
True values Esti- n = 20 n = 100 n = 300
α β mator Bias MBias SE RMSE Bias MBias SE RMSE Bias MBias SE RMSE

0.25 0.5 α̂ −0.0124 −0.0213 0.0606 0.0542 −0.0277 −0.0291 0.0233 0.0355 −0.0292 −0.0296 0.0124 0.0320
β̂ 0.2411 0.1496 0.6230 0.3956 0.2930 0.2213 0.2248 0.3750 0.2615 0.2322 0.0747 0.2963

0.25 1.0 α̂ 0.0230 0.0173 0.0723 0.0680 0.0002 −0.0013 0.0298 0.0289 −0.0031 −0.0039 0.0162 0.0183
β̂ 0.0484 −0.2142 15.138 0.6845 0.2650 −0.0001 10.147 0.7274 0.2239 0.0406 0.4547 0.5718

0.5 0.5 α̂ −0.0346 −0.0318 0.1004 0.0986 −0.0447 −0.0432 0.0406 0.0728 −0.0473 −0.0428 0.0188 0.0618
β̂ 0.2436 0.1512 0.6225 0.4308 0.2234 0.1677 0.2024 0.3440 0.1973 0.1543 0.0663 0.2879

0.5 1.0 α̂ 0.0103 0.0032 0.1067 0.0893 −0.0051 −0.0067 0.0517 0.0502 −0.0101 −0.0097 0.0282 0.0328
β̂ 0.2108 −0.0227 18.389 0.7911 0.2919 0.0633 10.861 0.7391 0.2592 0.0624 0.5843 0.6181

0.8 0.5 α̂ −0.0204 −0.0151 0.0554 0.0546 −0.0092 −0.0083 0.0230 0.0253 −0.0045 −0.0041 0.0129 0.0133
β̂ 0.1773 0.0777 0.4606 0.3622 0.0733 0.0474 0.1234 0.1473 0.0395 0.0334 0.0622 0.0693

0.8 1.0 α̂ −0.0060 0.0028 0.0517 0.0484 −0.0023 −0.0001 0.0227 0.0241 −0.0012 −0.0010 0.0126 0.0136
β̂ 0.2104 −0.0373 16.475 0.7766 0.2051 0.0264 0.6920 0.6181 0.1027 0.0168 0.2561 0.3444

4. Applications with real data

In this section, we analyze two real-data applications, comparing the fits of several distributions
against the GHG distribution. Model selection is performed using four information criteria: AIC
(Akaike Information Criterion; [34]), BIC (Bayesian Information Criterion; [35]), CAIC (Consistent
AIC; [36]) and HQIC (Hannan-Quinn Information Criterion; [37]). These criteria are defined as:
AIC = −2ℓ̂(·) + 2p, BIC = −2ℓ̂(·) + log(n)p, CAIC = −2ℓ̂(·) + (log(n) + 1)p =BIC+p, and
HQIC = −2ℓ̂(·) + 2 log(log(n))p, where p denotes the number of parameters in the model.

4.1. Application to exceedances of flood peak data

The data correspond to the exceedances of flood peaks (in m3/s) of the Wheaton River near Carcross
in Yukon Territory, Canada. The data consist of 72 exceedances for the years 1958-1984, rounded to
one decimal place (see [6, 11, 38]), and are listed in Table 3. Table 4 presents descriptive statistics,
including the sample skewness coefficient (CS) and kurtosis coefficient (CK). We compare the fits of
the EP and Pareto distributions, with the fit of the GHG distribution with two parameters given in (2.5).
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Table 3. Data on exceedances of Wheaton River floods.

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0 12.0 9.3
1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1 2.5 14.4 1.7 37.6
0.6 2.2 39.0 0.3 15.0 11.0 7.3 22.9 1.7 0.1 1.1 0.6
9.0 1.7 7.0 20.1 0.4 2.8 14.1 9.9 10.4 10.7 30.0 3.6
5.6 30.8 13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0
1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5 2.5 27.0

Table 4. Descriptive statistics for exceedances of flood peaks data.

n Median Mean SD CS CK
72 9.5 12.204 12.297 1.473 5.890

The box plot in Figure 4 shows one very extreme datum. This outlier makes the right tail heavier.
While most data points cluster around 10 flood peak exceedances (m3/s), there is one notable outlier
at 64 exceedances (m3/s).

●

0 10 20 30 40 50 60

Figure 4. Boxplot for exceedances of flood peaks data.

Table 5 presents the ML estimates for the GHG, EP, and Pareto model parameters, along with their
corresponding AIC, BIC, CAIC, and HQIC values.

Table 5. Exceedances of flood peaks data: model, ML estimates, AIC, BIC, CAIC, and
HQIC values.

Model ML estimates AIC BIC CAIC HQIC
GHG(β, α) β̂ = 1.236(0.465), α̂ = 0.403(0.045) 569.8 574.3 576.3 571.6
EP(α, β, γ) α̂ = 0.1, β̂ = 0.424(0.046), γ̂ = 2.880(0.491) 578.6 583.2 586.2 581.3
Pareto(α, β) α̂ = 0.1, β̂ = 0.244(0.029) 608.1 610.4 611.4 609.0
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The GHG model demonstrates superior fit to the data, as evidenced by its consistently lower AIC,
BIC, CAIC, and HQIC values compared to both EP and Pareto models.

In Figure 5, the left side displays the histogram of the data along with the curves of the respective
fitted distributions. It is evident that the GHG distribution provides a better fit for the exceedances of
flood peak data compared to the EP and Pareto distributions. On the right side, there is a zoomed-in
view of the right tail of the histogram, which more conclusively demonstrates that the GHG distribution
concentrates more probability in the right tail than the other two distributions for this data set.
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Figure 5. Plots of the GHG (black), EP (red) and Pareto (green) models.

4.2. Application to income data

The dataset used in this application comes from the Survey of Consumer Finances (SCF), a
nationally representative sample containing extensive information on assets, liabilities, income, and
demographic characteristics of respondents (potential U.S. customers). We analyzed a random sample
of 500 income-positive U.S. households interviewed in the 2004 survey. The variable of interest is
each household’s annual income in US dollars. The data can be accessed from the Federal Reserve’s
webpage: https://www.federalreserve.gov/econres/scfindex.htm. Descriptive statistics
for these data are presented in Table 6. We compared the fits of the SMG and Pareto distributions
with that of the three-parameter GHG distribution given in (2.1).

Table 6. Descriptive statistics for income data.

n Median Mean SD CS CK
500 54000 321021.9 3410936 21.127 461.575

Figure 6 displays a boxplot revealing several extreme values. These outliers create a heavy right
tail in the distribution. Notably, while most observations cluster around 5,400 (representing typical
household income), there is an extreme value of 75 million in family income.
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Figure 6. Boxplot for Descriptive statistics for income data.

Table 7 presents the ML estimates for the parameters and log-likelihood values of the GHG, SMG,
and Pareto models. Table 8 displays the corresponding values for the AIC, BIC, CAIC, and HQIC
criteria for each model.

Table 7. Model, ML estimates, and Log-likelihood.

Model ML estimates Log-likelihood
GHG(σ, α, β) σ̂ = 56417.5(2174.647), α̂ = 0.5(0.015) , β̂ = 756.154(62.525) -6466.192
SMG(σ, α) σ̂ = 22584.770(4027.346), α̂ = 0.581(0.018) -6541.776
Pareto(α, β) α̂ = 260, β̂ = 0.186(0.008) -6802.113

Table 8. Model, AIC, BIC, CAIC, and HQIC values.

Model AIC BIC CAIC HQIC
GHG(σ, α, β) 12938.38 12951.03 12954.03 12943.35
SMG(σ, α) 13087.55 13095.98 13097.98 13090.86
Pareto(α, β) 13606.23 13610.44 13611.44 13606.05

We observed that the GHG model yields the lowest values for the AIC, BIC, CAIC, and HQIC
criteria, indicating that it provides a better fit to the data compared to both the SMG and Pareto models.

Figure 7 shows the empirical cdf with estimated GHG, SMG, and Pareto cdf’s, which also shows a
favorable agreement between the GHG model and the income data.
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Figure 7. Plots of the empirical cdf, with estimated GHG cdf, estimated SMG, and estimated
Pareto cdf models

5. Conclusions

In this work, we introduce a new heavy-tailed distribution through a scale mixture extension of
the G distribution, combining it with the Beta distribution to create the GHG model. We study some
properties, perform parameter estimation by the ML method, and show two applications to real data.
The GHG distribution contains the G and SMG distributions as special cases. This is of interest, since
it can be used in actuarial sciences and related fields. The GHG model is a viable alternative for fitting
data with extreme observations. Some other properties of the GHG model are:

• The GHG distribution exhibits a heavy right tail.
• The GHG distribution has two representations, as presented in Propositions 2.1 and 2.2.
• The pdf, cdf, and hazard function have explicit forms expressed through known special functions,

such as the Gauss hypergeometric function.
• The hazards function is monotonically decreasing, which provides information about the

distribution’s tail behavior (specifically, its heavy right tail; see [28]).
• In the first application, we demonstrate that the GHG distribution effectively models flood peak

exceedance data, outperforming two well-known distributions: the EP and Pareto distributions.
• In the second application, we show that the three-parameter GHG distribution provides a good fit

for income data, surpassing the SMG and Pareto distributions.
• A more comprehensive estimation study of the GHG distribution’s three parameters will be

addressed in future work, where we will analyze the effects and limitations of the σ and β

parameters in the ML estimation method.
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Appendix

The first-order partial derivatives of ℓ(θ) with respect to θ are given by:

∂ℓ(θ)
∂β

=
1
β
−

κ0Φ (−z, 2, κ0)

2F1 (1, κ0, κ1;−z)
,

∂ℓ(θ)
∂α

= ψ(α) − ψ(α) − log(z) +
κ0Φ (−z, 2, κ0)

2F1 (1, κ0, κ1;−z)
.

The second-order partial derivatives of l(θ) with respect to θ are given by:

∂2ℓ(θ)
∂β2 = −

1
β2 +

2κ0Φ (−z, 3, κ0)

2F1 (1, κ0, κ1;−z)
−

(
κ0Φ (−z, 2, κ0)

2F1 (1, κ0, κ1;−z)

)2

,
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∂2ℓ(θ)
∂β∂α

=

(
κ0Φ (−z, 2, κ0)

2F1 (1, κ0, κ1;−z)

)2

−
2κ0Φ (−z, 3, κ0)

2F1 (1, κ0, κ1;−z)
,

∂2ℓ(θ)
∂α2 = −ψ′(α) − ψ′(α) +

2κ0Φ (−z, 3, κ0)

2F1 (1, κ0, κ1;−z)
−

(
κ0Φ (−z, 2, κ0)

2F1 (1, κ0, κ1;−z)

)2

,

where κi = α + β + i, ψ(·) and ψ′(·) are the digamma and trigamma functions, respectively.
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