Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/142441
DC FieldValueLanguage
dc.contributor.authorSanfilippo, Stefanoen_US
dc.contributor.authorHernández Gálvez, José Juanen_US
dc.contributor.authorHernández Cabrera, José Juanen_US
dc.contributor.authorÉvora Gómez, Joséen_US
dc.contributor.authorRoncal Andrés, Octavioen_US
dc.contributor.authorCaballero Ramírez, Mario Carmeloen_US
dc.date.accessioned2025-07-11T12:03:14Z-
dc.date.available2025-07-11T12:03:14Z-
dc.date.issued2025en_US
dc.identifier.issn0868-4952en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/142441-
dc.description.abstractElectricity demand estimation is vital for the optimal design and operation of microgrids, especially in isolated, unelectrified, or partially electrified areas where demand patterns evolve with electricity adoption. This study proposes a causal model for electricity demand estimation that explicitly considers the electrification process along with key factors such as hour, month, weekday/weekend distinction, temperature, and humidity, effectively capturing both temporal and environmental demand patterns. To capture the electrification process, a “Degree of Adoption” factor has been included, making it a distinctive feature of this approach. Through this variable, the model accounts for the evolving growth in electricity usage, an essential consideration for accurately estimating demand in newly electrifying areas as consumers gain access to electricity and integrate new electrical appliances. Another key contribution of this study is the successful application of the Kolmogorov–Arnold Network (KAN), an architecture explicitly designed to model complex nonlinear relationships more effectively than conventional neural networks that rely on standard activation functions, such as ReLU or sigmoid. To validate the effectiveness of the proposed electricity demand modelling approaches, comprehensive experiments were conducted using a dataset covering 578 days of electricity consumption from El Espino, Bolivia. This dataset enabled robust comparisons among KAN and conventional neural network architectures, such as Deep Feedforward Neural Network (DFNN) and Multi-Layer Perceptron (MLP), while also assessing the impact of incorporating the Degree of Adoption factor. The empirical results clearly demonstrate that KAN, combined with the Degree of Adoption, achieved superior performance, obtaining an error of 0.042, compared to DFNN (0.049) and MLP (0.09). Additionally, integrating the Degree of Adoption significantly enhanced the model by reducing DFNN estimation error by approximately 10%. These findings validate the effectiveness of explicitly modelling electricity adoption dynamics and confirm KAN’s relevance for electricity demand estimation, highlighting its potential to support microgrid design and operation.en_US
dc.languageengen_US
dc.relation.ispartofInformaticaen_US
dc.subject3304 Tecnología de los ordenadoresen_US
dc.subject.otherNeural networksen_US
dc.subject.otherMicrogridsen_US
dc.subject.otherElectricity demanden_US
dc.subject.otherEstimationen_US
dc.subject.otherCausal Modeen_US
dc.titleEvolving Electricity Demand Modelling in Microgrids Using a Kolmogorov-Arnold Networken_US
dc.typeArticleen_US
dc.identifier.doi10.15388/25-INFOR590en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR SIANI: Inteligencia Artificial, Redes Neuronales, Aprendizaje Automático e Ingeniería de Datos-
crisitem.author.deptIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0003-2427-2441-
crisitem.author.orcid0000-0001-9348-7265-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.parentorgIU Sistemas Inteligentes y Aplicaciones Numéricas-
crisitem.author.fullNameSanfilippo, Stefano-
crisitem.author.fullNameHernández Gálvez, José Juan-
crisitem.author.fullNameHernández Cabrera, José Juan-
crisitem.author.fullNameÉvora Gómez, José-
crisitem.author.fullNameRoncal Andrés, Octavio-
crisitem.author.fullNameCaballero Ramírez, Mario Carmelo-
Appears in Collections:Artículos
Adobe PDF (813,31 kB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.