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Abstract. Electricity demand estimation is vital for the optimal design and operation of micro-
grids, especially in isolated, unelectrified, or partially electrified areas where demand patterns evolve
with electricity adoption. This study proposes a causal model for electricity demand estimation that
explicitly considers the electrification process along with key factors such as hour, month, week-
day/weekend distinction, temperature, and humidity, effectively capturing both temporal and envi-
ronmental demand patterns.

To capture the electrification process, a “Degree of Adoption” factor has been included, making
it a distinctive feature of this approach. Through this variable, the model accounts for the evolving
growth in electricity usage, an essential consideration for accurately estimating demand in newly
electrifying areas as consumers gain access to electricity and integrate new electrical appliances.
Another key contribution of this study is the successful application of the Kolmogorov—Arnold
Network (KAN), an architecture explicitly designed to model complex nonlinear relationships more
effectively than conventional neural networks that rely on standard activation functions, such as
ReL.U or sigmoid.

To validate the effectiveness of the proposed electricity demand modelling approaches, compre-
hensive experiments were conducted using a dataset covering 578 days of electricity consumption
from El Espino, Bolivia. This dataset enabled robust comparisons among KAN and conventional
neural network architectures, such as Deep Feedforward Neural Network (DFNN) and Multi-Layer
Perceptron (MLP), while also assessing the impact of incorporating the Degree of Adoption fac-
tor. The empirical results clearly demonstrate that KAN, combined with the Degree of Adoption,
achieved superior performance, obtaining an error of 0.042, compared to DFNN (0.049) and MLP
(0.09). Additionally, integrating the Degree of Adoption significantly enhanced the model by reduc-
ing DFNN estimation error by approximately 10%.

These findings validate the effectiveness of explicitly modelling electricity adoption dynamics
and confirm KAN’s relevance for electricity demand estimation, highlighting its potential to support
microgrid design and operation.

Key words: neural networks, microgrids, evolving demand modelling, electricity demand
estimation, electrification, causal model.
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1. Introduction

Neural networks excel at capturing complex nonlinear relationships inherent in electricity
demand data (Gifalli ef al., 2024), effectively modelling consumer adoption behaviours,
seasonal patterns (Romdan-Portabales et al., 2021), and environmental influences. This pa-
per demonstrates how neural network modelling techniques, incorporating parameters that
explicitly reflect electricity adoption dynamics, can significantly reduce demand estima-
tion error. Such improvements are critical to advancing electrification efforts in isolated
regions, ensuring reliable and sustainable energy access, and realising the transformative
impact of electricity provision on local development.

Electrification, defined as providing electricity to populations who previously lacked
access to a primary energy source, presents significant challenges. However, supplying
electricity to isolated areas is crucial for improving quality of life, enhancing access to
services like lighting, communication, healthcare, and education, and driving economic
development by enabling businesses and job creation.

Where power lines are not available, microgrids provide a solution (Shufian and Mo-
hammad, 2022). A microgrid integrates energy production technologies, such as solar
photovoltaic cells, energy storage solutions (Hirsch et al., 2018), transmission lines, sub-
stations, and distribution networks, to control and manage electricity flow. These systems
address electricity needs in isolated areas (Barelli ef al., 2019) while promoting clean
energy adoption.

The optimal design and operation of microgrids depend on electricity demand models
(Ma and Zhai, 2019; Mir et al., 2020). These models must balance the risks of overesti-
mating demand, leading to unnecessarily large systems (Mikita ez al., 2024), and underes-
timating it, which could result in inadequate systems that fail to meet demand (Sanfilippo
etal.,2023).

Key considerations in electricity demand forecasting include temporal resolution.
Forecasts can be made at various intervals (Chicco and Mazza, 2020) such as 15 minutes,
hourly, daily, or yearly (Chung and Jang, 2022; Kaur and Kaur, 2016). Minute-by-minute
resolution is ideal for real-time control, while hourly resolution offers a practical balance,
useful for optimising generation and managing renewable energy integration. Daily mod-
els are valuable for long-term planning and strategic decisions related to infrastructure
and investment.

User behaviour is another critical factor shaping electricity demand (Lazzari et al.,
2022). Exceptional events (holidays, sporting events) and weather conditions (Wassie and
Ahlgren, 2023) significantly influence demand patterns (Yukseltan et al., 2020), and sea-
sonal variations provide a structured framework for demand modelling (Fan et al., 2024).
As the population’s electricity needs evolve (Venkataramanan and Marnay, 2008), exist-
ing users may increase electricity demand as they acquire more appliances, known as the
degree of electricity adoption (Agrawal et al., 2020). At the same time, new households
are added to the grid, further increasing overall demand. This dynamic nature of demand
underscores the need for adaptive models that account for fluctuations in demand during
periods of adoption (Jaramillo et al., 2024).
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Another significant challenge in electricity demand modelling is the limited availabil-
ity of reliable data (Morales et al., 2024; Huang and Zhu, 2016). Addressing this requires
models that balance data limitations while ensuring low estimation error.

This paper proposes a novel approach to electricity demand modelling in microgrids,
employing neural network techniques explicitly designed to capture complex nonlinear
dynamics. By integrating a technological adoption parameter, our approach effectively
represents the evolving patterns of electrification in isolated areas. Leveraging real-world
data, the proposed methodology adapts robustly to dynamic demand behaviours, addresses
challenges related to limited datasets, and accommodates varying temporal resolutions.
Our approach, by significantly reducing the error associated with electricity demand esti-
mation, provides insights to effectively support electrification strategies, foster sustainable
development, and enhance energy access in isolated regions.

2. Electricity Demand Methods

Several methods have been developed to model electricity demand (Baba, 2021). The
literature presents various classifications of these methods (Verwiebe et al., 2021). De-
pending on the technique, methods can be grouped into statistical analysis, artificial neu-
ral networks, metaheuristics, stochastic processes, fuzzy logic, grey systems theory, or
engineering-based approaches.

Modelling methods can also be classified based on the type of data they utilise: causal
methods and historical data-based methods. Causal methods examine the cause-and-effect
relationship between electricity demand (the output) and various input variables, such as
economic, social, and climatic factors. Conversely, historical data-based methods use past
values to estimate future electricity demand, linking factors such as humidity to electricity
demand. Hybrid methods, which combine elements of causal and historical approaches,
offer an area for further exploration (Ghalehkhondabi et al., 2017).

Numerous studies have explored the development of electricity demand models, con-
sistently emphasising the importance of data (Liu et al., 2023). Comprehensive data are
crucial for building reliable models, as they enhance the ability to identify patterns, trends,
and causal relationships within the electricity demand landscape. These studies collec-
tively highlight that the robustness of demand estimation models is directly linked to the
depth and breadth of the data available, including historical records, weather conditions,
economic indicators, and other relevant factors. Consequently, efforts in data collection,
cleaning, and integration are fundamental to improving the operational effectiveness of
electricity demand models.

Existing models often fail to account for the transient nature of electricity demand,
which evolves as users’ lifestyles change. Most studies focus on long-term estimation and
do not dynamically adjust to shifts in user behaviour or the progressive adoption of electri-
cal appliances. Incorporating behavioural aspects into energy system models (Huckebrink
and Bertsch, 2021) is essential for understanding the socio-technical transformation of en-
ergy systems. A significant challenge in electricity demand modelling lies in effectively
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addressing consumer behaviour, while also integrating multiple spatial and temporal res-
olutions, managing uncertainty, and incorporating multi-energy systems (Fodstad et al.,
2022).

For instance, in Stevanato et al. (2020), a long-term optimisation model is developed
that considers the evolution of electricity demand, aiding informed investment decisions
for capacity expansion over a defined time horizon. Another study presents a novel method
for the optimal design of grid-connected microgrids based on long-term electricity de-
mand forecasting (Faraji et al., 2020). Applied to a real microgrid in Tehran, Iran, this
method uses HOMER software to address the gap in research on multi-year electricity
demand growth-based optimal planning and design of microgrids. The study analyses
the impacts of annual electricity demand growth through various scenarios and methods.
However, these studies do not fully capture the dynamic nature of changing electricity
demand patterns.

This work aims to provide an electricity demand model that can aid in optimising
the design and operation of microgrids in isolated areas. Our focus is on addressing the
challenges of modelling transient demand and dealing with potentially sparse data. The
ability to function with sparse data makes the model particularly suitable for isolated areas,
where data collection may be intermittent. In addition, this research extends our ongoing
efforts to incorporate artificial intelligence techniques for optimising power grids (Evora
et al., 2015; Evora-Gomez et al., 2015).

3. Hypothesis Statement

Modelling electricity demand in isolated regions presents significant challenges, partic-
ularly due to the nonlinear dynamics inherent in consumption patterns and the evolving
nature of electricity adoption during the electrification process. Neural networks are par-
ticularly well-suited to address these issues, as they are capable of capturing complex
nonlinear relationships in data and dynamically adapting to changing trends (Gifalli et
al., 2024). Given the additional constraints posed by scarce or incomplete datasets, Arti-
ficial Neural Networks (ANNs) offer a robust and flexible estimation solution, effectively
representing both the nonlinearities and the progressive nature of electrification, thus en-
abling precise and actionable estimates to support sustainable energy access.

H1: Incorporating a technological adoption parameter is necessary to effec-

tively capture the evolving patterns of electricity usage and demand dynamics.

H2: Neural network architectures explicitly designed to model nonlinear rela-

tionships provide lower error and higher computational efficiency compared to

traditional architectures.

Unlike traditional methods that rely on linear approximations, ANNs, modelled after
biological neural systems, excel at capturing non-linear interactions. This enables them
to uncover hidden patterns and emergent behaviours arising from complex interactions
among individual agents (Ogunmolu et al., 2016; Ha and Jeong, 2021). Its generalisa-
tion capacity allows ANNs to discern underlying patterns in datasets and apply them to
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unseen data, particularly when new data (e.g. demand in a different location) resembles
training data (Norouzi et al., 2019). This strength makes them particularly suited for elec-
tricity demand, where multiple interacting factors create complex patterns. Previous stud-
ies demonstrate their effectiveness in forecasting demand (Saravanan et al., 2012).

To ensure precision, the model decomposes estimations into temporal components,
accounting for the hour of the day and the month of the year. This approach allows the
ANN to capture localised patterns, enhancing the model’s reliability in identifying sea-
sonal and hourly variations. By linking estimations to specific times, even sparse data can
inform demand estimations. For instance, data specifying demand for a particular hour on
a given day reveals patterns associated with that time, contributing valuable insights to
the model’s training process, even when datasets are limited.

The model also analyses user behaviour and considers causal relationships between
external factors influencing electricity demand. Furthermore, ANNs can be retrained or
fine-tuned to adapt to evolving demand patterns as new data becomes available (Tajbakhsh
et al., 2017). Continuous daily training allows the model to incorporate recent data, re-
flecting changes in user behaviour and external conditions in real time.

The proposed causal model outputs hourly power demand per person (kKkW/person)
using the following input factors:

e Month of the Year: Seasonal changes affect electricity demand due to variations in
weather and daylight hours.

e Hour of Day: Demand fluctuates throughout the day, with peaks typically in the morning
and evening.

o Weekday vs. Weekend: Activity patterns differ, with weekends generally involving
higher household energy usage.

e Temperature: Influences the use of appliances like refrigerators, which work harder in
higher temperatures.

e Humidity: Affects perceived temperature, prompting increased use of cooling devices.

e Degree of Adoption: Reflects the extent to which a community relies on electricity for
daily activities, such as refrigeration and communication.

Despite its potential, the ANN model faces challenges. Overfitting may occur if the
input parameters are not carefully managed, reducing its ability to generalise to new loca-
tions. The model depends on the quality and diversity of available data; sparse or unrep-
resentative data could lead to suboptimal estimations. In the field of ANNs, high-quality
data are particularly essential, as the training process relies heavily on extensive and de-
tailed datasets (Hu, 2017). Additionally, societal and technological changes, such as the
adoption of new energy technologies, may not be immediately reflected in training data.

If successful, this approach could significantly enhance electricity demand estimation,
enabling optimal microgrid design and operations. Dynamic estimations would improve
microgrid design and real-time management, enhancing resilience and stability by pro-
viding deeper insights into demand dynamics (Shankar ez al., 2018).
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4. Experimental Work

The experimental work consisted of several phases, including data collection and prepa-
ration, data analysis, architecture definition, training, and validation.

4.1. Data Collection and Preparation

The data used in this study corresponds to El Espino in Bolivia and was taken from the
GitHub repository (Balderrama Subieta, 2022), over a period from 1 January 2016 to
31 July 2017, covering 578 days of recorded measurements. The dataset includes data
from 128 households, a hospital, a school, and street lighting. The electricity demand
data from EI Espino was captured at 5-minute intervals. Given that the primary objective
of the study is to create an electricity demand model on an hourly basis, the measurements
for each 5-minute interval were averaged to form hourly data points. This process involves
averaging all the values recorded within a specific hour by dividing the sum of these values
by the total number of measurements taken during that hour.

In ANN architectures, the representation of cyclical variables such as the hour of the
day and the month of the year is crucial. These parameters exhibit a circular nature where
values wrap around cyclically. For instance, 22:00 is as close to 23:00 as 23:00 is to 00:00,
or November is as close to December as December is to January. To effectively capture
this cyclical relationship, these parameters are represented using Cartesian coordinates:

2mi . [ 2mi
x = cos| - , y =sin| - , (1)
Imax Imax

where i is the current value of the cyclical variable (e.g. the hour of the day or the month
of the year), and ipax is the total number of possible values for the variable (e.g. 24 for
hours or 12 for months).

Figure 1 shows both the linear and Cartesian representations of months. The top row
represents the linear representation, where each month is sequentially ordered. It can be
observed that the distance between months does not account for their cyclic nature. For
example, the distance between January and December is shown as 11 when it should
actually be 1. Conversely, the bottom row displays the Cartesian projections, maintaining
equal distances between consecutive months.

Similarly, this method is applied to the hour of the day, using 24 points instead of 12. As
aresult, each of these parameters (Month of the Year and Hour of the Day) is represented
by two values instead of one, helping the ANN model learn the inherent periodicity of the
data, thereby improving its ability to estimate and understand time-dependent patterns.
Additionally, a boolean variable was included to indicate whether a given day in El Espino
is a weekend or not.

Another input parameter was introduced to account for the degree of adoption of elec-
tricity within the community. This parameter is a decimal value ranging from O to 1 that
captures the gradual increase in electricity demand over time, reflecting both the economic
constraints and the progressive realisation of electricity’s benefits in this area. Initially,
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Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov | Dec Jan

i 12 1 2 3] 4 5 6 7 8 9 10 11 12 1

Linear 44 1 1 1 1 1 1 1 1 1 1 1 1
Distance

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

X 0 1/2 | V3/2 1 V32 | 172 0 -1/2 | V372 -1 | /372 -1/2 0 1/2

3% 1 V32 | 1/2 0 -1/2 | =372 -1 | V372 | -1/2 0 1/2 | V3/2 1 V3/2

Cartesian
Distance

Fig. 1. Distances between months of the year: linear vs cartesian representations.

not all inhabitants could afford a comprehensive set of electrical appliances. However, as
time progresses and the advantages of electrification become more apparent, the degree
of electricity adoption naturally increases.

The adoption process was modelled using the logarithmic adoption model

a(r) = 1gmiee+n 2)

where the equation represents the degree of electricity adoption transitioning from O to 1
as t evolves.

Here, ¢ is the time elapsed since the introduction of electricity, m and n are parameters
that must be adjusted, and a(¢) represents the degree of adoption at time ¢. This equation
is a specific form of a logarithmic transformation applied to a growth model. It captures
how the adoption of a new technology initially grows exponentially and then slows as
the community reaches saturation. This model is particularly useful for representing the
S-shaped adoption curve characteristic of many technological adoptions (Shukla et al.,
2015).

To determine the parameters m and n for calculating the degree of adoption at each
point in time, a regression method was employed using the El Espino data. This method
involves finding the best-fitting parameters that minimise the differences between the ob-
served data and the values estimated by this logarithmic model. The estimated values of
the parameters are: m = 0.1253, n = —0.1143. By doing so, the underlying trend of
how households adopt electrical devices was captured, allowing the adoption process to
be parameterised effectively and the degree of adoption to be calculated.

Additionally, to enhance the causal model, temperature and humidity variables were
incorporated. This data was retrieved from Open Meteo (Zippenfenig, 2023) and aligned
with the electricity demand data from El Espino in terms of the hour of the day and month
of the year.
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Fig. 2. Electricity demand profile: minimum, mean, and maximum demand throughout the day.

The final step involved preparing the data for integration into the ANN. This consisted
of preprocessing the raw data, addressing any inconsistencies, and formatting it into a
structured, consolidated, and normalised dataset suitable for ANN application.

4.2. Data Analysis

In this section, we conducted an analysis of the data to understand the dependence between
input variables and electricity demand. We focused on identifying potential causal rela-
tionships, as our model is specifically designed for this purpose. As part of the exploratory
analysis, we analysed the temporal distribution of electricity demand throughout the day,
as shown in Fig. 2. The middle curve represents the average electricity demand, the upper
curve represents the maximum, and the lower curve represents the minimum. Electric-
ity demand peaks at 10 PM and reaches its lowest point around 7 AM. While the figure
highlights distinct patterns, it is important to note that this exploratory analysis does not
establish statistical significance.

To validate the statistical significance of causal relationships between input factors and
demand, we applied an Analysis of Variance (ANOVA). This method evaluates depen-
dence by comparing variances attributed to different sources, such as individual factors
and their interactions, with the residual variance, which represents random error.

As a statistical test, ANOVA evaluates the linear influence of input factors on electric-
ity demand by contrasting the null hypothesis with the alternative, identifying key con-
tributors to the output. The null hypothesis (Hp) asserts that the independent variables
(or input variables) have no significant effect on the dependent variable (output variable).
Conversely, the alternative hypothesis (H) posits that at least one input variable signifi-
cantly affects the output. The standard ANOVA model (Christensen, 1996) is formulated
as:

Yij =n+ai+Bj+vij+ €, 3
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where Y;; is the observed value for the dependent variable (electricity demand) for the
i-th level of the first factor and the j-th level of the second factor; u is the overall mean
of the dependent variable; «; represents the effect of the i-th level of the first factor (e.g.
Month); B; represents the effect of the j-th level of the second factor (e.g. Temperature);
vij is the interaction effect between the i-th level of the first factor and the j-th level of the
second factor; and ¢;; is the random error associated with the observation Y;;, assumed to
follow a normal distribution with mean zero and constant variance.

The test statistic used in ANOVA is the F-value, which measures the ratio of variance
explained by the factor or interaction to the unexplained variance (random error). This
F-value is used to compute the p-value, which quantifies the probability of observing
such a ratio under the null hypothesis (Hp). A small p-value (e.g2. p < «, where « is
typically set at 0.05) indicates that the observed variance is unlikely to have occurred by
chance, leading to the rejection of Hp and confirming a significant effect of the factor or
interaction. A large p-value suggests insufficient evidence to reject the null hypothesis,
indicating that the observed differences may result from random variation.

In Table 1, we present the results of the ANOVA analysis. In hypothesis testing, the
p-value represents the probability of observing a test statistic as extreme as, or more ex-
treme than, the one computed from the data, assuming that the null hypothesis is true. As
observed in the table, the variables Month (month of year) and Hour (hour of day) exhibit
a statistically significant effect on electricity demand (p-value < 2 x 107!6), indicating
seasonal patterns and diurnal variations in electricity demand. The interaction effects be-
tween certain variables, such as Month : Weekend and Month : Hour, also demonstrate
significant influences on electricity demand. These findings underscore the complex in-
terplay between different factors affecting electricity demand patterns.

The five-way interaction among all variables (p-value = 0.987) suggests that the com-
bined effect of Month, Weekend, Hour, Temperature, and Humidity on electricity demand
is not statistically significant. However, this non-significance suggests that ANOVA’s lin-
ear model does not capture a meaningful combined effect of all variables on electricity
demand. This does not exclude the possibility of nonlinear relationships that are not cap-
tured in the ANOVA linear model.

In any case, the ANOVA results provide valuable insights into the factors driving
electricity demand variability, emphasising the importance of considering multiple vari-
ables simultaneously in electricity demand models. However, it is worth noting that while
ANOVA may not be capable of detecting nonlinear relationships, ANNs can identify both
linear and nonlinear dependencies, offering a powerful alternative for modelling complex
relationships in electricity demand. In the following section, we will introduce the ANN
architectures we have designed, demonstrating their adeptness in capturing intricate rela-
tionships within the data.

The Degree of Adoption parameter was excluded from ANOVA because it is an esti-
mated, rather than observed, variable derived from a logarithmic adoption model. Since
ANOVA is best suited for observed variables, we used an alternative approach to test hy-
pothesis H1, which states that incorporating an electricity adoption factor is necessary to
effectively capture evolving electricity usage patterns.
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Table 1
ANOVA results: statistical significance of independent variables and interactions.

Variable F-value p-value

Month 379.251 <2x 10716
Weekend 44.579 2.55 x 10711
Hour 4533.618 <2x 10710
Temperature 875.502 <2x 10716
Humidity 20.656 5.55 x 1076
Month : Weekend 8.320 9.70 x 1071
Month : Hour 19.389 <2x 10716
Weekend : Hour 5.756 <2x10716
Month : Temperature 14.013 <2x 10716
Weekend : Temperature 1.384 0.239
Hour : Temperature 19.521 <2x 10716
Month : Humidity 39.199 <2x 10716
Weekend : Humidity 13.819 0.000202
Hour : Humidity 6.461 <2x 10716
Temperature: Humidity 0.316 0.573
Month : Weekend : Hour 0.987 0.548
Month : Weekend : Temperature 6.417 1.02 x 10710
Month : Hour : Temperature 1.510 4.01 x 1077
Weekend : Hour : Temperature 0.811 0.721
Month : Weekend : Humidity 4.846 1.64 x 1077
Month : Hour : Humidity 1.249 0.004701
Weekend : Hour : Humidity 0.263 0.999
Month : Temperature : Humidity 7.281 1.58 x 10712
Weekend : Temperature : Humidity 17.559 2.81 x 1077
Hour : Temperature : Humidity 1.359 0.116
Month : Weekend : Hour : Temperature 0.719 0.999
Month : Weekend : Hour : Humidity 0.604 1.000
Month : Weekend : Temperature : Humidity 4.961 9.70 x 10~8
Month : Hour : Temperature : Humidity 1.040 0.320
Weekend : Hour : Temperature : Humidity 1.543 0.0467
Month : Weekend : Hour : Temperature : Humidity 0.811 0.987

To validate this hypothesis, we conducted a systematic comparative analysis across
multiple neural network architectures implemented within this study. Each architecture
was evaluated under controlled conditions, explicitly comparing error when including
and excluding the Degree of Adoption parameter. Model performance was quantitatively
assessed using standardised error metrics, enabling objective measurement of the param-
eter’s impact. Results showed a statistically significant improvement, with the Degree of
Adoption reducing estimation error by approximately 10%.

These findings provide strong empirical support for hypothesis HI, confirming that
the Degree of Adoption significantly enhances the neural network’s estimative capability
by explicitly accounting for the dynamic evolution of electricity demand. Consequently,
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the Degree of Adoption parameter was included as a standard input factor across all sub-
sequent architectures in this study.

4.3. Architecture Definition

In this study, the causal factors influencing electricity consumption are explicitly estab-
lished as input parameters to the neural network. Conversely, electricity demand, which
is influenced by these factors, is defined as the network’s output parameter. All the ANNs
tested in this study share a common input and output structure. The input layer contains
8 nodes corresponding to the input factors: Month of Year (2 components), Hour of Day
(2 components), Weekends, Temperature, Humidity, and Degree of Adoption. Following
this, a min-max scaling layer normalises the input data to the range [0, 1], ensuring pro-
portional feature contributions, consistency, and improved convergence speed. The output
is rescaled based on the same proportion by which the input factors were scaled, ensuring
that the estimated hourly demand in kW/person reflects the real-world scale.

In developing this ANN model, various considerations and experiments were under-
taken to determine the most appropriate architecture. Through successive iterations, we
tested different input factors, architectures, layer sizes, and configurations to improve the
model’s performance. Each iteration involved hyperparameter tuning and architectural ad-
justments to more effectively capture the underlying patterns in the data.

The selection of layer size is a crucial factor in model performance. In this study,
we employed a heuristic approach to determine an appropriate layer size. While system-
atic hyperparameter optimisation methods, such as grid search, Bayesian optimisation, or
metaheuristic algorithms, are often used in research to refine network architectures (Kaveh
and Mesgari, 2023), they come with significant computational costs. Given the practical
scope of our work, our heuristic approach provides a reasonable trade-off between error
and efficiency without requiring an exhaustive exploration of the hyperparameter space.

Initially, we experimented with a simple feedforward linear network (Fine, 1999), but
it proved inadequate due to the inherent non-linearities in the data. However, the linear
model was insufficient for capturing the complex relationships between input factors and
electrical demand. Therefore, we explored other architectures to achieve smaller error.

We experimented with Deep Feedforward Neural Networks (DFNNs), which are char-
acterised by having at least five hidden layers. This depth allows the network to model
complex patterns in data, with each layer applying non-linear transformations to the input
data, effectively handling non-linearities. The architecture consisted of five hidden lay-
ers with 50, 250, 750, 300, and 150 nodes, respectively, as shown in Fig. 3, with ReLU
activation functions incorporated alongside the linear layers.

We also explored a Multi-Layer Perceptron (MLP) architecture (Delashmit et al.,
2005), incorporating activation layers such as the sigmoid and ReL.U functions (Dubey
et al., 2022), as illustrated in Fig. 4. Activation layers introduce non-linearities into the
model, enabling it to capture more complex patterns. The sigmoid function, though his-
torically popular, suffers from vanishing gradient issues, leading to slower convergence. In
contrast, ReLU exhibited superior performance by maintaining the data’s dynamic range
and offering computational efficiency.
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Fig. 3. Deep feedforward neural network architecture for the electricity demand model.
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Fig. 4. Multi-layer perceptron architecture for the electricity demand model.
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After testing these architectures, we decided to explore Kolmogorov-Arnold Networks
(KANSs) due to their computational efficiency compared to MLPs (Liu et al., 2024), mak-
ing them suitable for scenarios with limited resources. Unlike MLPs, KANs do not require
fixed activation functions, which simplifies their architecture. Additionally, they excel at
uncovering complex mathematical relationships even when the underlying patterns are
unknown, making them well-suited for the task at hand.

We implemented a KAN, leveraging the Kolmogorov-Arnold Representation Theo-
rem, shown here:

2n+1 n
fOonx. ) =) g (Zhi,-(x,a). “)
i=1 j=1

This decomposition forms the foundation of KANs, where the univariate functions g;
and h;; work together. The functions £;; (x ;) independently transform each input variable
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x; into an intermediate representation, and these intermediate representations are aggre-
gated by the outer functions g;, which combine them into the final output. This approach
ensures efficient approximation of complex multivariate functions through independent
transformations and collective integration.

KANSs approximate the functions g; and 4;; using learnable activation functions, with
B-splines being a common choice. B-splines are piecewise polynomial functions, known
for their flexibility and efficiency in function approximation, defined using a set of knots
to, 11, - . . , Iy, and recursively constructed as:

I, ift; <x <t
Bio(x) = ) (5a)
0, otherwise,

X —1 Livk+1 — X
——Bij—1(x) + —————Bit1,k—1(x). (5b)
tivk — 1 Litk+1 — litl

Bix(x) =

These basis functions are efficient for approximating the univariate functions g; and 4;;;

due to their locality property. Adjusting a single control point influences only a localized
region, ensuring computational efficiency.

Following the Kolmogorov-Arnold decomposition, the KAN structure processes in-
puts x; through the inner functions 4;; (x ;) in the input layer. The intermediate representa-
tions are combined through summation in the intermediate layer, and the outer functions g;
in the output layer synthesize these results to approximate the target function. This design
ensures efficient approximation of complex multivariate functions, providing both theo-
retical and computational advantages, such as universal approximation and low-overhead
computations via B-splines.

Unlike MLPs and DFNNs, which use fixed activation functions, KANs employ learn-
able multivariate functions that act as both weights and activation functions. These adap-
tive functions evolve during learning, capturing complex relationships in the data more
effectively. KANs also offer enhanced interpretability and can interact seamlessly with
human users, making them highly suitable for applications such as microgrids, where
data may be scarce and retraining is crucial. Due to their architecture, KANs can be said
to support continual learning (Verwimp et al., 2024) more effectively than MLPs.

The KAN approach allows seamless integration of new data, ensuring the model re-
mains up-to-date, enhancing its practical utility in dynamic environments.

Figure 5 illustrates the architecture of the KAN designed to estimate hourly electricity
demand. The network includes multivariate layers (depicted in dark grey) that replace
traditional linear weights with learnable activation functions. The input layer has 8 nodes,
corresponding to 6 input factors, with month and hour split into two components. The
hidden layer has 50 nodes and is fully connected, employing the multivariate approach to
learn the data patterns. Finally, the output layer produces the hourly demand in kW/person,
processed through a scaling layer to match the real-world data scale.
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Fig. 5. Kolmogorov-Arnold network architecture for the electricity demand model.

4.4. Training and Validation

The training of the ANN is a critical aspect of the method, involving the application of
various optimisation techniques and the iterative adjustment of the nodes and edges within
the ANN. The choice of optimiser typically depends on the specific problem and dataset.
It is common practice to experiment with different optimisers to identify the most effective
approach for the modelled data. In the domain of optimisation algorithms for training deep
learning models, one of the most widely established methods is Adaptive Moment Estima-
tion (Adam) (Saad and Adnan, 2021). Due to its effectiveness and popularity, Adam was
selected as the optimisation algorithm for training the ANNSs in this study (Kingma and
Ba, 2014). Adam combines the strengths of various optimisation techniques, providing
efficient and adaptive learning rates during training.

This phase utilised the publicly available dataset comprising 13 872 hours, which
was divided into three subsets: 8 878 hours for training, 2 220 hours for validation, and
2774 hours for testing. This distribution follows standard practice commonly adopted in
ANN applications. During the validation process, a learning rate of 0.01 was chosen, with
a maximum of 20 epochs set. Within this range, the early stopping mechanism identified a
sufficient number of epochs for termination. The training and testing data were randomly
selected, in accordance with standard practices in machine learning experimentation.

The model was trained on a standard CPU, specifically an Intel Core i9-9980HK with
a base clock speed of 2.4 GHz and 32 GB of RAM. Notably, it was unnecessary to use
a GPU for this training process, demonstrating that even with modest computational re-
sources, such as a standard personal computer, the model can be effectively trained. This
makes the approach particularly feasible for deployment in environments where advanced
computational infrastructure is unavailable.

During the training phase, the error of the trained architectures was evaluated using
Mean Absolute Error (MAE) (Bhuyan et al., 2016). The error is calculated as the average
of the absolute differences between estimated values and actual values as shown in Yan
and Zhou (2024):

1 .
=~ I¥i— i, 6)

i=1
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where ¢ represents the error, n represents the number of data points, ¥; denotes the actual
observed values, and ¥; represents the estimated values. MAE assigns higher weight to
larger errors, making it sensitive to outliers. Consequently, significant errors have a more
substantial impact on the overall loss.

This study also aims to validate the model and assess its error. Validation entails com-
paring the model’s estimations against actual measured data, providing a measure of its
reliability. We evaluate the error (¢) which quantifies the model’s ability to estimate elec-
tricity demand across diverse conditions. The error serves as a key metric for determining
the effectiveness of the model. By quantifying the degree to which the model’s estima-
tions align with actual measured data, error provides a clear and interpretable measure
of performance. Lower error values indicate stronger estimating capabilities, reinforcing
the model’s suitability for estimating electricity demand in isolated areas. This metric not
only validates the reliability of the model but also informs potential improvements for
enhanced performance.

4.5. Results

Figure 6 presents the results from 20 experiments conducted for each ANN architecture:
DFNN, MLP, and KAN. Each experiment involved training the respective ANN for up to
20 epochs. The figure illustrates the relationship between training duration and mean error
across the 20 experiments, with key data points corresponding to specific epochs (1, 5, 10,
15, and 20). These points provide a clear trend analysis of the architectures’ performance
over time, highlighting differences in efficiency and error.

The choice of stopping criteria in neural network training can be approached in two
ways: either by setting a target error and determining the time required to reach it or by
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Fig. 6. Comparison of ANN architectures: MAE and training time over 20 epochs.
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Fig. 7. Comparison of ANN architectures: MAE and training time for up to 20 minutes.

defining a fixed training time and evaluating the resulting error. In Fig. 6, we followed the
first approach, selecting the number of epochs based on the observation that the obtained
errors remained within an acceptable range for demand estimation models. This decision
keeps the model within the target error threshold while avoiding unnecessary computa-
tional costs. In Fig. 7, we followed the second approach, setting the training time to a
maximum of 20 minutes to prevent overfitting.

Figure 6 demonstrates that KAN achieves the lowest error, reaching 0.042 in under
2 min, significantly outperforming the other architectures in terms of performance. This
performance highlights the computational advantages of KANs, especially their ability
to rapidly converge to a low error. MLP converges faster but with a higher error (0.09),
failing to achieve the rapid convergence and low error rates of KAN, which reduces the
error by nearly 54% compared to MLP. In contrast, the DFNN takes longer than the other
architectures, requiring over 6 min to achieve an error of 0.049, despite KAN reducing
this error by 13%. Its increased complexity, with additional layers and nodes, appears to
hinder rather than improve performance, indicating that greater model complexity does
not necessarily lead to better or faster results.

Figure 7 demonstrates that even with longer training times, KAN remains the most
effective architecture in reducing error, reaching 0.04. DFNN stabilises at an error between
0.044 and 0.049 after 5 min of training. MLP reaches its minimum (0.081) error after 4 min
but then remains above 0.08.

Our experimental results confirm the effectiveness of KANs for modelling electricity
demand in microgrids, consistent with their known capability to capture complex and non-
linear relationships (Liu et al., 2024). An important finding is their reduced low training
times and minimal resource usage, making KANSs particularly valuable. This is impor-
tant in isolated regions, where demand patterns change frequently, requiring models to
be updated regularly. The efficiency of KANs allows for rapid retraining and deployment,
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even with limited computational resources, ensuring timely insights in these challenging
environments. While DFNN provides a more balanced alternative, MLP’s slower conver-
gence and higher error emphasise the importance of selecting the right architecture when
designing ANNSs for specific applications.

These findings emphasise the critical role of architecture selection in optimising neural
network performance for electricity demand estimation. Specifically, they provide empiri-
cal support for H2, confirming that neural networks explicitly designed to model nonlinear
relationships achieve lower error and greater computational efficiency compared to tradi-
tional architectures.

From this point onward, we conducted new experiments to explore whether we could
leverage continuous learning (Ke et al., 2021) to further enhance the efficiency of KAN.
By enabling the model to integrate new data incrementally without requiring complete
retraining, it offers a promising approach to reduce computational overhead.

Our findings reveal that while continuous training effectively reduces training time, it
introduces a trade-off: increased error, as shown in Fig. 8, leading to less reliable outcomes
compared to full training. Full training consistently results in smaller errors, though it
requires longer training times. The increase follows a linear rather than an exponential
trend, as more data naturally demands more training time.
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As a result, in this case the choice of trade-off is clear: in scenarios where lower error
is key, reliability is prioritised over time savings. This approach ensures that the system
retains essential knowledge, even at the expense of longer training time. A viable compro-
mise may involve methods that mitigate catastrophic forgetting (McCloskey and Cohen,
1989) without excessive computational overhead.

5. Conclusions and Future Work

This study explores electricity demand estimation in microgrids, demonstrating that in-
corporating the Degree of Adoption reduces estimation error by effectively capturing the
progressive electrification process. Specifically, this parameter reflects evolving demand
patterns driven by increased electricity access and the integration of electrical appliances
among consumers. Our findings empirically support hypothesis H1, confirming the key
role of explicitly modelling electrification dynamics in improving the model’s estimation
capability.

Another key contribution is that the experimental results demonstrate the superiority
of KAN as a powerful solution for electricity demand modelling compared with MLP
and DFNN. KAN achieved an error of 0.042 in less than two minutes, outperforming
MLP (0.09 in under one minute) and DFNN (0.049 in over six minutes). These findings
demonstrate that non-linear architectures, such as KAN, can outperform traditional ar-
chitectures, supporting our H2. Therefore, the proposed KAN architecture proves to be a
robust and scalable solution for electricity demand modelling, addressing the challenges
posed by sparse and scarce data.

Beyond their low error, KANs are distinguished by their architectural simplicity and
efficiency, consistently maintaining minimal error while requiring fewer computational
resources. While continuous training is feasible, it seems unnecessary in this context due
to the increased error. In this case, convergence time is not a limiting factor—rather, the
primary objective is minimising error without compromise.

The modelling approach can be further extended to other geographical areas for vali-
dation and applied to electricity demand estimation in renewable energy communities or
individual buildings. Future work will focus on integrating additional metadata, such as
solar irradiation and socio-economic indicators, to reduce error, as well as conducting sen-
sitivity analyses to assess the significance of different variables. Moreover, determining
the minimum dataset size required to achieve an acceptable error threshold will provide
valuable insights for deploying the model in data-limited scenarios. Further research could
also explore the implementation of a structured optimisation process to systematically de-
termine optimal hyperparameters, such as layer size, to enhance model performance.
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