Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/141757
DC FieldValueLanguage
dc.contributor.authorPérez Molina, María Joséen_US
dc.contributor.authorCarta González, José Antonioen_US
dc.date.accessioned2025-06-30T14:19:28Z-
dc.date.available2025-06-30T14:19:28Z-
dc.date.issued2025en_US
dc.identifier.issn2077-1312en_US
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/141757-
dc.description.abstractWave energy is a promising renewable resource supporting the decarbonization of energy systems. However, its significant temporal variability necessitates long-term datasets for accurate resource assessment. A common approach to obtaining such data is through climate reanalysis datasets. Nevertheless, reanalysis data may not accurately capture the local characteristics of wave energy at specific sites. This study proposes a supervised machine-learning (ML) approach to estimate long-term wave energy at locations with only short-term in situ measurements. The method involves training ML models using concurrent short-term buoy data and ERA5 reanalysis data, enabling the extension of wave energy estimates over longer periods using only reanalysis inputs. As a case study, hourly mean significant wave height and energy period data from 2000 to 2023 were analyzed, collected by a deep-water buoy off the coast of Gran Canaria (Canary Islands, Spain). Among the ML techniques evaluated, Multiple Linear Regression (MLR) and Support Vector Regression yielded the most favorable error metrics. MLR was selected due to its lower computational complexity, greater interpretability, and ease of implementation, aligning with the principle of parsimony, particularly in contexts where model transparency is essential. The MLR model achieved a mean absolute error (MAE) of 2.56 kW/m and a root mean square error (RMSE) of 4.49 kW/m, significantly outperforming the direct use of ERA5 data, which resulted in an MAE of 4.38 kW/m and an RMSE of 7.1 kW/m. These findings underscore the effectiveness of the proposed approach in enhancing long-term wave energy estimations using limited in situ data.en_US
dc.languageengen_US
dc.relationINTERREG MAC 2021–2027 program in the RESMAC project (1/MAC/2/2.2/0011)en_US
dc.relation.ispartofJournal of Marine Science and Engineeringen_US
dc.sourceJournal of Marine Science and Engineering [ISSN 2077-1312], v. 13 , p. 1-25en_US
dc.subject3308 Ingeniería y tecnología del medio ambienteen_US
dc.subject3313 Tecnología e ingeniería mecánicasen_US
dc.subject.otherMeasure–Correlate–Predicten_US
dc.subject.otherWave energyen_US
dc.subject.otherMachine learningen_US
dc.subject.otherReanalysis dataen_US
dc.subject.otherWave perioden_US
dc.subject.otherSignificant wave heighten_US
dc.titleUse of Machine-Learning Techniques to Estimate Long-Term Wave Power at a Target Site Where Short-Term Data Are Availableen_US
dc.typeinfo:eu-repo/semantics/articleen_US
dc.typeArticleen_US
dc.identifier.doihttps://doi.org/10.3390/jmse13061194en_US
dc.relation.volume13en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.description.numberofpages25en_US
dc.utils.revisionen_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INGen_US
dc.description.sjr0,532
dc.description.jcr2,7
dc.description.sjrqQ2
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,4
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptGIR Group for the Research on Renewable Energy Systems-
crisitem.author.deptDepartamento de Ingeniería Mecánica-
crisitem.author.orcid0000-0003-1379-0075-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.parentorgDepartamento de Ingeniería Mecánica-
crisitem.author.fullNamePérez Molina, María José-
crisitem.author.fullNameCarta González, José Antonio-
Appears in Collections:Artículos
Adobe PDF (5 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.