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Abstract: Wave energy is a promising renewable resource supporting the decarbonization
of energy systems. However, its significant temporal variability necessitates long-term
datasets for accurate resource assessment. A common approach to obtaining such data
is through climate reanalysis datasets. Nevertheless, reanalysis data may not accurately
capture the local characteristics of wave energy at specific sites. This study proposes a
supervised machine-learning (ML) approach to estimate long-term wave energy at locations
with only short-term in situ measurements. The method involves training ML models
using concurrent short-term buoy data and ERA5 reanalysis data, enabling the extension
of wave energy estimates over longer periods using only reanalysis inputs. As a case
study, hourly mean significant wave height and energy period data from 2000 to 2023 were
analyzed, collected by a deep-water buoy off the coast of Gran Canaria (Canary Islands,
Spain). Among the ML techniques evaluated, Multiple Linear Regression (MLR) and
Support Vector Regression yielded the most favorable error metrics. MLR was selected due
to its lower computational complexity, greater interpretability, and ease of implementation,
aligning with the principle of parsimony, particularly in contexts where model transparency
is essential. The MLR model achieved a mean absolute error (MAE) of 2.56 kW/m and a
root mean square error (RMSE) of 4.49 kW/m, significantly outperforming the direct use of
ERA5 data, which resulted in an MAE of 4.38 kW/m and an RMSE of 7.1 kW/m. These
findings underscore the effectiveness of the proposed approach in enhancing long-term
wave energy estimations using limited in situ data.

Keywords: Measure–Correlate–Predict; wave energy; machine learning; reanalysis data;
wave period; significant wave height

1. Introduction
According to the International Renewable Energy Agency (IRENA), the need to use

renewable energy in any transition toward a climate-friendly future is indisputable [1]. As
IRENA reports, solar and wind energy continue to dominate the expansion of renewable
capacity, together accounting for 96.6% of all net renewable additions in 2024. In addition,
2024 represents the year with the highest annual increase in renewable power generation
capacity, as well as the greatest growth recorded—mainly solar energy—in percentage
terms. Within the spectrum of renewable energy sources (solar, wind energy, hydropower,
bioenergy, geothermal, and marine), IRENA identifies marine energy as the one that
experienced the smallest increase in capacity in 2024 [2].
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In this context, according to IRENA [3], “ocean energy is among the technologies that
must be scaled up to achieve full decarbonization of the energy system”. This statement
refers to the set of technologies designed to harness ocean energy as a resource.

With a projected global market potential of 350 gigawatts (GW) by 2050 [4], ocean
energy can deliver clean, local, and predictable electricity to coastal countries and island
communities worldwide. Within the broader category of ocean energy, wave energy—or the
kinetic and potential energy of the ocean surface, captured and harnessed primarily by wave
energy converters [5]—is abundant and offers several advantages: strong predictability,
low intermittency, high energy density, and wide availability [6]. According to Astariz and
Iglesias [7], wave energy is undoubtedly one of the most promising renewable sources.
Moreover, there are islands and regions where the potential for land-based renewables is
limited [8]. In such areas, wave energy may prove especially valuable, as reflected in a
growing body of literature on the subject [8].

The feasibility of implementing a wave energy conversion system at a target site
depends on multiple technical, socioeconomic, and environmental factors [9]. Among
these, the available energy at the site stands out, as it is a key parameter in determining the
levelized cost of electricity [7,8].

Given the inter- and intra-annual variability of wave energy highlighted by various
authors [10–14], long-term wave data series are required to estimate the average charac-
teristics of the resource over the lifetime of a wave energy project. As noted by Sun and
Wang [5], the long-term variability of wave energy resources will affect the practical decadal
deployment of wave energy converters. Access to extended wave datasets can help to
reduce the degree of uncertainty in estimating the levelized cost of electricity during the
planning phase of a wave energy project.

Given the difficulty of obtaining long-term records of wave data at target sites, reanal-
ysis data are commonly used as an alternative. One of the most widely used reanalysis
sources, as noted by Bessonova et al. [15], is the European Centre for Medium-Range
Weather Forecasts Reanalysis (ERA5) [16]. In this context, Tong et al. [11] used ERA5
reanalysis to analyze wave energy resources in the South China Sea from 1 January 1979
to 31 December 2024. Similarly, Silva et al. [10] used ERA5 wind–wave data (1950–2020)
to estimate the inter- and intra-annual wave energy variability along the northern coast
of mainland Portugal. Ulazia et al. [17] employed hourly ERA5 data from 1981 to 2020
(a 40-year period) to estimate wave energy potential in the Canary Islands. Liu et al. [14]
evaluated the long-term variability of wave power using ERA5 data spanning from 1940 to
2022. Mahmoodi et al. [18] analyzed the spatial and temporal characteristics of wave energy
in the Persian Gulf based on ERA5 reanalysis data over an 18-year period (2000–2017),
reporting clear evidence of seasonal variability in wave energy.

In order to assess how well reanalysis data represent measurements taken at target
sites, several studies have been conducted. Silva et al. [10] compared ERA5 reanalysis
data (10 January 2012–28 December 2019) with Leixões buoy data (tri-hourly records). The
Leixões buoy is located off the northwest coast of mainland Portugal. According to the
authors, ERA5 reanalysis data slightly underestimate the higher values of wave power
observed by the buoy. Tong et al. [11] evaluated the accuracy of ERA5 reanalysis data for
estimating wave power in the South China Sea, using in situ observations from a buoy
positioned in the central part of the southern South China Sea. The buoy data cover the
period from 22 February to 2 October 2021, amounting to just over seven consecutive
months. According to the authors, the results suggest that ERA5 reanalysis data are reliable
for calculating wave power in the South China Sea. Bessonova et al. [15] performed a global
evaluation of the ERA5 significant wave height (Hs) against measurements from 444 buoys
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worldwide. Their results indicate that ERA5 tends to underestimate Hs in the upper range.
This conclusion has also been reported by other authors [19–21].

Li et al. [22] compared wave energy estimated using reanalysis data and observational
data from a buoy located in the central area of the southern South China Sea, covering a
continuous 16-month period (14 December 2018–12 March 2020). According to the authors,
the Hs and energy period (Te) from ERA5 generally match the buoy observations in terms
of variation trends. However, during the summer monsoon season (May to September
2019), the ERA5 Hs values were higher than the observations. The ERA5 Te values were
consistently higher than those from the buoy throughout the entire period. Since both Hs

and Te are essential for calculating wave energy density, the authors conclude that further
calibration is needed to ensure accurate wave energy assessment. They use a feed-forward
neural network with a single hidden layer of eight neurons to calibrate these two parameters.
Ayuso-Virgili et al. [23], similarly to Li et al. [22], also propose calibrating two parameters
to improve wave energy assessment. Specifically, they focus on the calibration of Hs and
the peak period (Tp), applying so-called Measure–Correlate–Predict (MCP) methods, which
have been extensively used in the renewable energy literature to estimate long-term wind
conditions at target sites based on short-term wind measurement campaigns [24]. The
authors employ the most used MCP method, which relies on algorithms based on linear
functions [24].

The scientific literature reviewed shows that the wave energy resource exhibits both
seasonal and inter-annual variability at the various locations studied. Furthermore, it
has been demonstrated that discrepancies may arise between reanalysis data and in situ
buoy measurements.

In this context, it is justified that when planning the installation of wave energy
technologies at a target site, a long-term wave dataset should be analyzed. If such a dataset
is not available for the site, reanalysis data may be used instead, provided their accuracy is
improved. In this regard, several authors have proposed calibrating the parameters Hs and
Te [22], or Hs and Tp [23], to enhance the accuracy of wave energy assessment.

Other approaches, such as benchmarking against similar regional studies or using
regionally refined coupled numerical models, have also been proposed to address this
resolution gap (e.g., Zhu et al., 2023 [25])), although they fall outside the scope of this study.

1.1. Aims and Originality of This Paper

The aim of this paper is to propose a strategy for estimating long-term wave power
at a target site where a short-term measurement campaign of significant wave height (Hs)
and energy period (Te) has been conducted—specifically, at least one year of hourly mean
data—allowing for the characterization of the seasonal behavior of the resource during that
period [24].

The originality and scientific contribution of this work are reflected in the following
points, which summarize its contributions to the body of knowledge:

Twenty-four years (2000–2023) of hourly mean Hs and Te data from ERA5 reanalysis
are used to represent long-term wave conditions. However, these data are transformed
to improve the accuracy of wave power estimation by applying MCP methods based on
supervised machine-learning (ML) techniques.

A range of ML techniques are evaluated to determine which produces the best per-
formance metrics—RMSE, MAE, and R2—on test datasets that are not used during model
training or validation. The target variable in all models is wave power.

The ML techniques considered in this study include Random Forest (RF), k-Nearest
Neighbor (KNN), Multiple Linear Regression (MLR), Support Vector Regression (SVR),
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Artificial Neural Networks (ANNs) [26,27], and extreme gradient boost (XGBoost) [28]. For
each technique, the optimal hyperparameters are selected.

To analyze the influence of the year used for training and validation, each of the twenty-
four years of data is individually used as the short-term dataset, while the remaining years
serve as the long-term test dataset. This analysis is conducted using observations from a
buoy moored far from the coast, in deep open waters. As a result, the wave measurements
from the buoy sensors are not affected by local coastal effects and can be considered
representative of large coastal areas.

1.2. Structure of the Paper

Section 2 presents the wave data used in this study, namely the ERA5 reanalysis data
and the measurements from a buoy moored off the northern coast of Gran Canaria (Canary
Islands, Spain). The proposed method is described in detail in Section 3. Section 4 presents
and analyzes the results obtained from applying the method to the target site represented
by the buoy. Finally, Section 5 outlines the main conclusions drawn from this work.

2. Materials
This section briefly describes the rationale behind the selection of the study area and

the data used in the analysis.

2.1. Background

The Canary Archipelago, an outermost region of the European Union, is composed of
seven main small islands—Lanzarote, Fuerteventura, Gran Canaria, Tenerife, La Gomera,
and El Hierro. It is located off the northwest coast of the African continent, between the
latitudes 27◦37′ and 29◦25′ (subtropical zone) and the longitudes 13◦20′ and 18◦10′ west of
Greenwich (Figure 1).

 

Figure 1. Location of the Canary Islands and position of the buoy and ERA5 point used in this study.
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The Canary Archipelago presents certain peculiarities from an energy perspective [29].
The most notable characteristics in this regard are

(a) Its geographical remoteness, which greatly hinders interconnection with the large
energy supply networks of continental territories.

(b) A lack of conventional energy sources, resulting in an almost total dependence on
external supplies, primarily petroleum-based.

(c) Its high wind and solar energy potential.

This set of circumstances has led the Canary Islands to develop their own energy
strategy, which emphasizes the need to promote indigenous energy resources—namely,
renewable energies. Given the technological maturity achieved by wind and solar power,
these are currently the only sources being exploited on a large scale in the archipelago.
However, other renewable sources could also be harnessed in the Canary Islands. Among
them are energy sources potentially extractable from the Atlantic Ocean, in which the
archipelago is located.

Historically, barriers to the exploitation of this type of energy in the Canary Islands
have included the high installation and maintenance costs of these systems, as well as the
limited reliability of early prototypes deployed globally—mainly due to damage caused by
storms. However, at present, the technological improvements achieved by wave energy
conversion devices [29–32], the reduction in associated costs, and the limited availability
of land for wind energy development may make the installation of wave energy devices
along the Canary coast feasible. To this end, prior studies on the potential of this energy
source will be required.

In this regard, the Canary Islands’ Energy Transition Plan (Plan de Transición En-
ergética de CANarias—PTECAN1) represents a major strategic commitment to achieving a
sustainable, decarbonized, and self-sufficient energy system. One of its strongest pillars is
the promotion of renewable energy sources—especially wind, solar, and marine energy—
leveraging the archipelago’s abundant indigenous resources. Given the islands’ isolation
from continental grids, the plan also prioritizes energy storage, smart grid systems, and
hydrogen technologies to ensure supply reliability and environmental sustainability.

An essential actor in this transition is the Oceanic Platform of the Canary Islands
(PLataforma Oceánica de CANarias—PLOCAN2), a public company dedicated to research,
technological development, and innovation in the marine and maritime sectors. PLOCAN
operates a multi-purpose offshore test site and platform (Figure 2), located off the east
coast of Gran Canaria, that plays a key role in validating marine energy technologies under
real-sea conditions.

The PLOCAN test site spans an area of 23 km2 in waters ranging from 30 to 600 m deep.
It is equipped with a dedicated submarine power and communications cable connected
to the onshore electrical grid, allowing prototypes to be deployed, monitored, and even
integrated into the grid during testing phases. This infrastructure enables the testing
of wave energy converters, floating wind platforms, ocean current turbines, and hybrid
systems combining multiple sources. PLOCAN, in line with PTECAN, exemplifies the
region’s commitment to becoming a global benchmark in island energy transition and
marine renewable innovation.

2.2. Data Used

The buoy used in this study (code 2442), a SeaWatch type, belongs to the offshore
network of Puertos del Estado [30] and is moored at a depth of 780 m off the northwest
coast of Gran Canaria. The buoy’s location (latitude: 28◦11.4′ N, longitude: 15◦48.6′ W; see
Figure 1) qualifies it as being in deep waters, with its measurements largely unaffected by



J. Mar. Sci. Eng. 2025, 13, 1194 6 of 25

shadowing effects—except for the northwest component, which may be distorted by the
shadowing effect of Tenerife Island.

 

Figure 2. PLOCAN’s offshore test site and platform.

The ERA5 data correspond to the coordinates 28◦30′ N, 16◦00′ W (Figure 1), as this
is the ERA5 grid point closest to the location of the Puertos del Estado buoy. The dataset
consists of hourly mean values of Hs and Te, covering the period from 1 January 2000 to 31
December 2023.

3. Method
A block diagram illustrating the proposed method, covering the process from data

collection to results analysis, is shown in Figure 3.

3.1. Task 1 of the Method

The first step in the process consists of collecting data from the selected sources—
namely, the Hs and Te reanalysis data from ERA5 and the observed Hs and Te data from the
buoy considered in this study.

3.2. Task 2 of the Method

In this step, a comparison is performed between the reanalysis data and the buoy data,
with the aim of identifying potential differences between them. The comparisons focus on
the parameters Hs and Te, as well as on the wave power (Pwave) which is estimated using
Equation (1), commonly applied in several studies [11,13,23,31].

Pwave =
ρseawater·g2

64π
H2

s Te (1)

In Equation (1), ρ is the density of seawater (1025 kg/m3), and g is the acceleration
due to gravity (9.81 m/s2). Hs is expressed in meters, Te in seconds, and Pwave in kilowatts
per meter (kW/m).



J. Mar. Sci. Eng. 2025, 13, 1194 7 of 25

 

Figure 3. Schematic representation of the process used to estimate long-term wave power at a target
site using MCP methods, with ERA5 reanalysis data as input.

3.3. Task 3 of the Method

In this step, six ML techniques are considered to construct the MCP models. The ML
techniques employed are appropriately described in the literature: MLR, SVR, KNN, RF,
and ANN in [26,27] and XGBoost in [28].

• MLR: A baseline linear model that assumes additive relationships between the inputs
and the output.

• SVR: A non-linear model that identifies optimal hyperplanes in a transformed feature
space, suitable for capturing complex patterns.

• KNN: A distance-based algorithm that predicts output values by averaging the nearest
training points in the feature space.

• RF: An ensemble of decision trees trained on bootstrapped subsets of the data to
enhance robustness and reduce overfitting.

• XGBoost: A powerful boosting technique that builds trees sequentially to correct the
errors of previous trees.

• ANN: Layered computational models capable of learning non-linear relationships
through training across multiple hidden units.

These methods were selected to cover a diverse set of modeling paradigms—linear
(MLR), non-linear (SVR, KNN), ensemble-based (RF, XGBoost), and deep learning (ANN)—
allowing for a comparison of their predictive performance and generalization ability. Each
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technique offers distinct advantages in terms of flexibility, interpretability, and capacity to
model complex relationships in oceanographic time series.

Each model is fed with Hs and Te reanalysis variables to directly estimate the wave
power at the target site—specifically, at the location where the buoy is moored.

The proposed models for estimating the target variable were developed using multiple
regression, as shown in Equation (2).

Yt = f (Xt) = f


ERA5︷ ︸︸ ︷

ln(H s,t

)
, ln(Te,t)

 (2)

The datasets are preprocessed by calculating the logarithm of Hs and Te, based on
a logarithmic transformation of Equation (1) leading to a linear form, as expressed in
Equation (3):

ln(P wave) = ln
(ρseawaterg

64π

)
+ 2·ln(Hs) + ln(Te) (3)

In the functional forms of the models, X = (X1,X2)T represents the input variables,
the subscript t indicates the evaluated time step, and Yt is the predicted response variable,
corresponding to ln(Pwave) at the target site. Once this variable has been estimated, a
post-processing step is performed to obtain Pwave, as shown in Equation (4).

Pwave = exp(Yt) (4)

The process is summarized in two steps, each represented by a number enclosed in a
circle, as shown in Figure 3.

In the first step, all variables were standardized using z-score normalization—
subtracting the mean and dividing by the standard deviation. The scaling parameters
were computed from the training set and subsequently applied to the training, validation,
and test data to avoid data leakage.

Next, the optimal hyperparameters for the selected model are determined (Figure 2).
The data are divided into 10 folds to train and evaluate the model using cross-validation,
ensuring robustness and minimizing the risk of overfitting. In each iteration, one fold is
used as the validation set, while the remaining folds are used for training. The model is
then defined using the selected ML technique, and the error metric to be used during the
training and validation of the MCP model is specified.

For each ML technique used, a hyperparameter search space is defined, meaning that
key values are explored to optimize model performance (Table 1).

Table 1. Regression models for wave power estimation.

Model Tuned Hyperparameters Preprocessing Main R Packages

RF
‘mtry’ ∈ [1, p];

‘trees’ ∈ [500, 3000];
‘max_depth’ ∈ {3, 5, 7, 30}

Log
transformation;
centering and

scaling

‘randomForest’
[32–34], ‘ranger’
[35,36], ‘parsnip’

[37–39], ‘tune’ [40,41],
‘yardstick’ [42,43]

ANN

Hidden layers ∈ [1, 3];
neurons per

layer ∈ [2, 100];
epochs ∈ [100, 1500]

Log
transformation;
centering and

scaling

‘h2o’ [44], ‘tidymodels’
[45], ‘recipes’ [46,47],

’yardstick’
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Table 1. Cont.

Model Tuned Hyperparameters Preprocessing Main R Packages

XGBoost

‘min_n’ ∈ [2, 40];
‘tree_depth’ ∈ [1, 15];

‘learn_rate’ ∈ [0.001, 0.3];
‘loss_reduction’ ∈ [0, 10]

Log
transformation;
centering and

scaling

‘xgboost’ [48–50],
‘tidymodels’ [45],
‘tune’, ‘yardstick’

SVR ‘C’ ∈ {0.1, 1}; ‘σ’ ∈ {0.001,
0.01}; ‘ε’ = 0.001

Log
transformation;
centering and

scaling

‘caret’ [51,52], ‘kernlab’
[53,54], ‘yardstick’,
‘doParallel’ [55,56]

KNN
‘neighbors’ ∈ [3, 50];

‘weight_func’ ∈ {10 types};
‘deg_free’ ∈ [2, 18]

Log
transformation;

splines; centering
and scaling

‘kknn’ [57,58],
‘tidymodels’, ‘tune’,

‘yardstick’

MLR
None (standard linear

regression: intercept, ‘Ts’,
‘Hs’ coefficients)

Log
transformation;
centering and

scaling

‘stats’ [37], ‘caret’,
‘rsample’ [59,60],

‘yardstick’

For hyperparameter optimization, we applied a grid search combined with 10-fold
cross-validation. This procedure systematically explored the hyperparameter space defined
for each machine-learning model (as detailed in Table 1) and selected the configuration
that minimized the average root mean squared error (RMSE) on the validation folds. This
strategy ensured that the selected hyperparameters were optimal within the explored space,
guaranteeing model robustness and generalization capability.

In the case of RF, the hyperparameters explored include the number of trees (trees), the
number of variables randomly selected at each split (mtry), where p is the total number of
predictor variables, and the maximum tree depth (max_depth) [61].

For ANN, combinations of hyperparameters such as the number of hidden layers, the
number of neurons per layer, and the number of training epochs are explored.

In the case of XGBoost, the defined hyperparameters include the minimum number
of observations per node (min_n), the learning rate (learn_rate), the maximum tree depth
(tree_depth), and the minimum loss reduction required to make a split (loss_reduction).

For SVR, different values of the key parameters—C (regularization parameter) and σ

(kernel width or bandwidth parameter)—are tested using a predefined grid [34].
In KNN, the hyperparameters include the number of neighbors used for prediction

(neighbors), the neighbor weighting function (weight_func: rectangular, inv, gaussian, trian-
gular, Epanechnikov, biweight, triweight, cos, rank, optimal), and the degrees of freedom
of the splines applied to the predictor variables (deg_free).

In MLR, parameters are adjusted based on the errors obtained on the validation data,
without any hyperparameter tuning beyond the inherent structure of the linear model.

Subsequently, the model is trained with the best parameters and evaluated using all
available short-term data. For the evaluation, we use the metrics MAE, (Equation (5)),
RMSE (Equation (6)), and R2 (Equation (7)).

MAE =
1
n ∑n

i=1|yi − ŷi| (5)

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (6)

R2 = 1 −
∑n

i=1

(
yi − ∑n

i=1 yi
n

)2

∑n
i=1(yi − ŷi)

2 (7)
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In Equations (5)–(7), yi is the observed value, ŷi is the predicted value, and n is the
total number of observations.

In Step 2, the best-performing model (with the optimal parameters) is used to estimate
the values of the long-term target variable.

3.4. Task 4 of the Method

In the fourth task, a Wilcoxon test [62] is performed to evaluate the statistical signifi-
cance of the metric values obtained by the different MCP models analyzed. The comparison
focuses on the ML technique that generated the smallest errors, with a preset significance
level of 0.05. The p_values are adjusted using the Benjamini–Hochberg method [62].

4. Results and Discussion
This section presents the results of the analyses conducted based on the tasks described

in the methodology, as outlined in Figure 3.

4.1. Comparison of the Data Recorded in the Two Data Sources

Figure 4 shows the Pearson correlation coefficients between the different variables
used in the analysis.

 

Figure 4. Pearson correlation coefficients between the variables recorded by the buoy and those from
ERA5.

As shown in Figure 4, the Pearson correlation coefficient obtained from the hourly
mean significant wave height data recorded by ERA5 and the buoy during the period
2000–2023 was R = 0.89. This value is similar to the one reported by Li et al. [22] (R = 0.90).
However, the Pearson correlation coefficient obtained for the energy periods from both
sources was R = 0.67, which is lower than the value reported by Li et al. [22] (R = 0.9).

The correlation coefficient between Pwave,Buoy and Hs,ERA5 is 0.84, whereas the correla-
tion between Pwav,Buoye and Te,ERA5 is only 0.31. Due to the greater influence of significant
wave height compared to the energy period in wave power estimation, the correlation
coefficient between Pwave,Buoy and Pwave,ERA5 reaches a value of R = 0.83.
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As shown in Figure 5, the mean significant wave height is higher at the target site
(1.67 m) compared to the corresponding ERA5 mean (1.64 m). However, the mean energy
period at the target site is lower (5.49 s) than the corresponding ERA5 value (8.33 s).

 

Figure 5. Scatter plots comparing wave parameters from buoy observations and ERA5 reanalysis
data: (a) significant wave height (Hs); (b) energy period (Te).

Although the coefficient of determination for wave power is moderate (R2 = 0.69),
the MAE and RMSE values were found to be 4.38 kW/m and 7.10 kW/m, respectively
(Figure 6). The mean wave power estimated using ERA5 data was 12.5 kW/m, whereas the
mean estimated from buoy data was 8.9 kW/m (Figure 6). In this context, reducing these
errors is considered important in order to improve the accuracy of the results.

 

Figure 6. Comparison between observed and ERA5-estimated wave power values.

4.2. Results Obtained from the MCP Models

Figure 7 presents the values of the performance metrics (MAE, RMSE, and R2) obtained
during the testing phase (long-term) for the MCP models, using each of the ML techniques
considered (RF, XGBoost, SVR, ANN, KNN, and MLR). Each boxplot contains 24 values,
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corresponding to the test metric results obtained when each MCP model was trained and
validated using 1 of the 24 individual years of data (2000–2023).

 

Figure 7. Performance metrics, (a) MAE, (b) RMSE, and (c) R2, obtained during the testing phase
for the MCP models trained with different ML techniques. Each boxplot represents the distribution
of metric values obtained from 24 different training/validation years (2000–2023). Red dashed lines
indicate the reference metric values obtained from the direct comparison between ERA5 and buoy data.
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As shown in Figure 7, the ML techniques that yielded the best average metric values
were MLR and SVR. Moreover, Figure 7 shows that, regardless of the year used for training
and validation, these techniques consistently outperformed the reference metrics computed
directly between ERA5 values and buoy measurements.

To assess whether the differences among the metric values obtained by the various ML
techniques are statistically significant, the Wilcoxon test [62] was applied with a significance
level of 0.05. The p_values were adjusted using the Benjamini–Hochberg method [62]. No
statistically significant differences were observed between MLR and SVR for the MAE
(p_value: 0.724), RMSE (p_value: 1.000), and R2 (p_value: 0.407) metrics (Figure 8).

 

Figure 8. Pairwise Wilcoxon test results (p-values) for comparing ML techniques based on (a) MAE,
(b) RMSE, and (c) R2. Statistically significant differences (p_value < 0.05) are highlighted in green
while non-significant differences (p_value > 0.05) are highlighted in red.

Nevertheless, MLR was selected as the preferred model due to its lower computational
complexity, higher interpretability, and ease of implementation. This choice aligns with the
principle of parsimony, especially in contexts where model transparency is an important
consideration.

Table 2 presents the parameter values of the MLR models obtained for each train-
ing/validation year. The parameters obtained for the remaining ML techniques are pro-
vided in Appendix A.
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Table 2. Standardized and de-standardized parameters of the MLR models for each training year.
The table shows the standardized coefficients (a′, b′, c′) and the corresponding de-standardized
parameters (A, b, and c) of the MLR models fitted using data from each year (2000–2023). The values
of A are expressed in J/(m3·s2), and the exponents b and c correspond to the power-law formulation of
wave power estimation. The standardized intercept a′ is theoretically zero due to the standardization
of variables; small numerical deviations are within machine precision.

Year
Standardized Coefficients De-Standardized Parameters

a’ b’ c’ A
J/
(
m3s2) b c

2000 1.48 × 10−16 0.9798 −0.1515 4.113 2.688 −0.415
2001 3.73 × 10−16 0.9098 −0.1123 3.647 2.448 −0.302
2002 6.05 × 10−16 0.9661 −0.1452 3.933 2.569 −0.386
2003 −1.20 × 10−15 0.9673 −0.1129 3.572 2.524 −0.295
2004 1.76 × 10−16 0.9007 −0.0157 2.285 2.749 −0.048
2005 6.93 × 10−17 0.9362 −0.1914 5.719 2.527 −0.516
2006 −7.58 × 10−17 0.9418 −0.1246 4.346 2.492 −0.330
2007 −3.55 × 10−16 0.919 −0.1166 4.677 2.443 −0.310
2008 2.16 × 10−16 0.9246 −0.0859 3.781 2.477 −0.230
2009 −1.25 × 10−16 0.9506 −0.1008 3.610 2.566 −0.272
2010 −2.02 × 10−17 0.9048 −0.0892 3.264 2.49 −0.245
2011 −2.51 × 10−16 0.9017 −0.1020 3.738 2.419 −0.274
2012 1.81 × 10−17 0.9238 −0.0911 3.337 2.616 −0.258
2013 −4.62 × 10−17 0.9079 −0.0360 2.777 2.264 −0.090
2014 2.65 × 10−16 0.9154 0.0368 1.834 2.315 0.093
2015 1.28 × 10−16 0.9221 −0.0627 2.867 2.500 −0.170
2016 1.47 × 10−16 0.9148 −0.0947 3.600 2.589 −0.268
2017 1.40 × 10−16 0.9407 −0.1211 4.004 2.683 −0.345
2018 −7.57 × 10−16 0.9715 −0.0840 3.320 2.475 −0.214
2019 −2.28 × 10−17 0.9615 −0.2132 6.719 2.711 −0.601
2020 4.85 × 10−16 0.9554 −0.1062 4.417 2.621 −0.291
2021 4.64 × 10−16 0.9519 −0.1778 5.688 2.562 −0.479
2022 −5.64 × 10−16 0.8899 −0.0635 3.172 2.443 −0.174
2023 −2.65 × 10−16 0.9281 −0.1520 5.081 2.626 −0.430

The MLR model used with standardized data is shown in Equation (8), where the
asterisks indicate that the variables are standardized (mean = 0, standard deviation = 1).

[ln(Pwave)]
∗ = a′ + b′·[ln(Hs)]

∗ + c′·[ln(Te)]
∗ (8)

The coefficients a′, b′, and c′ in Equation (8) cannot be directly interpreted in terms of
the original physical equation, Equation (1), since the variables are standardized. Therefore,
it is necessary to reverse the standardization process, as shown in Equation (9)

ln(Pwave) = a + b·ln(Hs) + c·ln(Te) (9)

The values of a, b, and c are obtained from Equation (10), provided in Appendix B.

b = b′·
(

σln(Pwave)

σln(Hs)

)
; c = c′·

(
σln(Pwave)

σln(Te)

)
; a = µln(Pwave) − b·µln(Hs) − c·µln(Te) (10)

In Equation (10), µ and σ represent the mean and standard deviation, respectively, of
the unstandardized variables.
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Equation (9) can be rewritten as Equation (11), which allows for comparison with the
physical model in Equation (1).

Pwave = A·Hb
s ·Tc

e (11)

In Equation (11), the parameter A is derived from Equation (12).

A = exp(a) (12)

Equations (12) and (1) are equivalent when the following condition is met (Equation (13)):

A =
ρseawater·g2

64π
; b = 2 ; c = 1 (13)

The de-standardized parameters in Table 2 reveal the relationship between the wave
power at the target site and the ERA5-based Hs and Te parameters, through Equation (11).

Although the functional form of the regression model (Equation (11)) is based on the
physical wave power equation (Equation (1)), the empirical fitting using ERA5 input data
and buoy observations as targets yields different coefficients. In particular, b > 2, c < 1, and
the values of A are significantly higher than (ρ_seawater · g2)/64π. These discrepancies can
be explained by the systematic biases observed in ERA5 variables: underestimation of Hs

and overestimation of Te (Figure 6).
In this context, the model adjusts the exponents and the constant to compensate for

these mismatches and to produce a more accurate estimate of actual wave power. The
resulting model does not contradict physical theory; rather, it empirically adapts it to the
specific characteristics of the available data.

Figure 9 shows the boxplots of MAE and RMSE errors obtained during training (short-
term) and testing (long-term) of the MLR models, using each of the 24 available years as
the training set in a temporal cross-validation process. In all cases, the test errors are higher
than those observed during training, and Wilcoxon paired-sample tests confirm that these
differences are statistically significant (p_value < 0.05). However, despite their statistical
significance, the absolute differences between training and test errors are moderate. The
medians, means, and interquartile ranges are similar, suggesting that the models exhibit
good temporal generalization capability, with consistent performance when applied to
years not included in the training process. This indicates that no relevant overfitting has
occurred and supports the robustness of the proposed approach.

Figure 9. Comparison of training (blue) and testing (red) errors (MAE and RMSE) for MLR models
using temporal cross-validation. Wilcoxon test p-values indicate statistically significant differences.
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Figure 10 shows the evolution of long-term monthly mean wave power obtained from
ERA5 and buoy data, as well as the values estimated using the MLR models trained on the
year with the lowest RMSE (2022) and the year with the highest RMSE (2004).

 

Figure 10. Monthly mean wave power from buoy data, ERA5 reanalysis, and MLR models trained on
the years with the lowest (a) and highest (b) RMSE. Statistical metrics show the improved performance
of MLR models compared to ERA5.

The highest observed monthly mean wave power values occur during the periods
from January to March and from November to December. During these months, the
differences between the reanalysis-based wave power and that recorded by the buoy are
more pronounced. The ERA5 data systematically overestimate wave power during these
peak months. Despite these discrepancies, the Pearson correlation coefficients between
the buoy and ERA5 monthly means and those from the MLR model were 0.96 and 0.98,
respectively, indicating a strong relationship between the seasonal variations in ERA5/MLR
data and the buoy measurements.

As shown in Figure 10, the error metrics associated with the MLR models are lower
than those of ERA5, even when using the model trained on the year that yielded the highest
testing RMSE. This demonstrates that the MLR-based methodology not only captures the
seasonal dynamics of wave power with high accuracy but also outperforms ERA5 in terms
of predictive precision. Moreover, the ability of the model to accurately track peak wave
power months reinforces its robustness and suggests its potential usefulness for seasonal
wave energy resource planning in coastal areas. The analysis showed that the specific year
chosen for model training (2000–2023) had only a minor impact on model performance.
All models trained with one full year of data achieved consistent and robust results that
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outperformed direct ERA5-based estimates. This finding confirms the suitability of using
any single full year for training in similar contexts.

As shown in Figure 11, no clear diurnal pattern is observed in the hourly mean wave
power. However, the interquartile range of ERA5 estimates is consistently wider than that
of both the buoy data and the MLR model estimates, indicating higher uncertainty. ERA5
also exhibits a systematic overestimation of the wave power throughout the day. Although
this bias is less pronounced in the worst-case MLR model (Figure 11b), the model still
demonstrates better alignment with buoy observations in terms of central tendency and
dispersion, further supporting its robustness for hourly-scale applications.

 

Figure 11. Hourly mean wave power from buoy, ERA5, and MLR models trained on the best
(a) and worst (b) performing years. ERA5 shows greater interquartile variability and a systematic
overestimation of wave power.

MCP methods are based on a set of assumptions [24], including knowledge of the
seasonal variation pattern during the concurrent data period and climate stability. The
short-term period used for training the models must be long enough to allow the extraction
of seasonal wave behavior. The general recommendation is that this concurrent dataset
should span at least one year. These methods ignore the effects of climate change and
assume that the wave behavior during the energy project’s lifetime will be similar to that of
the past—i.e., they assume the statistical stationarity of the datasets.
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In this context, Figure 12 shows the evolution of hourly wave power throughout 2023,
calculated from buoy data and estimated by the MLR model trained using data from the
year 2000. This scenario represents a test of model performance trained at the beginning
of the available dataset (2000–2023) and evaluated at its end. In this case study, the MLR
model continued to outperform ERA5, providing better error and correlation metrics, thus
supporting the temporal robustness of the proposed approach.

 

Figure 12. Hourly wave power in 2023 from buoy observations and estimates from the MLR model
trained with data from 2000.

When MCP models are used to estimate long-term renewable energy resources, it is
generally recommended to train the models for at least one full year [24]. Increasing the
duration of the training period allows the models to better learn the relationship between
the observed data and the reference data, potentially reducing uncertainty in long-term
resource estimation. However, extending the measurement campaign also increases the
associated costs. Therefore, determining the optimal duration of a measurement campaign
should be based on a cost–benefit analysis tailored to the specific characteristics and
constraints of each project [63]. It is also worth noting that in some regions, the minimum
duration of resource assessment campaigns is regulated by official guidelines [64].

In the context of the present case study, Figure 13 illustrates the trends observed
in long-term error and correlation metrics as a function of the number of years used to
train the MLR models. The results show that increasing the training period from 1 to
4 years leads to a slight decrease in the average error metrics (MAE and RMSE) and a
slight increase in the coefficient of determination (R2). These findings confirm that longer
training periods can marginally improve model performance, although with diminishing
returns. The improvement observed by extending the training period from three to four
years was below 1%, and is considered marginal from a practical standpoint. No statistical
significance test was performed, as the magnitude of the difference does not suggest a
meaningful impact.
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Figure 13. Influence of training period length (1–4 years) on the long-term performance metrics of
MLR models: (a) MAE, (b) RMSE, and (c) R2. Trend curves illustrate the marginal improvement in
model performance with longer training durations.

5. Conclusions
This work presents a methodology based on supervised ML techniques to estimate

long-term wave power at coastal locations where only short-term in situ wave data are
available. The approach combines a limited measurement campaign with long-term ERA5
reanalysis data, applying MCP methods to develop predictive models for wave power at
the target site.

The main findings can be summarized as follows:

• ERA5 reanalysis data systematically overestimate wave power compared to buoy
observations, especially during high-energy months, and fail to accurately capture the
daily and seasonal variability at the target site.

• Machine-learning techniques—particularly MLR and SVR—substantially improve
wave power estimation, reducing error metrics (MAE, RMSE) and increasing the
coefficient of determination (R2) relative to ERA5-based predictions.

• The MLR model offers a key advantage through its interpretable power-law form,
enabling direct analysis of how ERA5 variables influence wave power estimates. The
parameters A, b, and c provide insight into calibration bias and variable sensitivity,
bridging data-driven modeling with physical understanding.

• The approach demonstrates strong temporal robustness, with MLR models trained on
early-period data (e.g., 2000) still outperforming ERA5 when applied to recent years
(e.g., 2023), even under evolving wave conditions.

• The methodology is fully reproducible and transferable to other coastal regions, relying
on openly available reanalysis data and implemented entirely with transparent R-
based tools, which supports its adoption in data-limited marine energy assessments.

• Additionally, in this case study, extending the training period from one to four years
resulted in slight improvements in model performance. While this suggests that longer
measurement campaigns may offer marginal benefits, such conclusions should be vali-
dated on a site-specific basis and balanced against the increased cost of data acquisition.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
ERA5 European Centre for Medium-Range Weather Forecasts Reanalysis
GW GigaWatts
Hs Significant wave height
IRENA International Renewable Energy Agency
KNN K-Nearest-Neighbor
KW/m KiloWatts per meter
MAE Mean absolute error
MCP Measure–Correlate–Predict
ML Machine learning
MLR Multiple Linear Regression
PLOCAN PLataforma Oceánica de CANarias—Oceanic Platform of the Canary Islands
PTECAN Plan de Transición Energética de CANarias—Canary Islands’ Energy Transition Plan
Pwave Wave power
RF Random Forest
R2 Coefficient of determination
RMSE Root mean squared error
SVR Support Vector Regression
Te Energy period
Tp Peak period
XGBoost eXtreme Gradient Boosting

Appendix A

Table A1. Parameters of the RF and ANN models.

Year RF Parameters ANN Parameters

Mtry Trees Max_Depth Hidden
Layers Epochs Neurons

per Layer

2000 1 3000 30 1 604 2
2001 1 3000 30 1 1004 5
2002 1 3000 30 2 904 9-9
2003 1 3000 30 1 604 2
2004 1 3000 7 1 1004 9

https://portus.puertos.es/#/
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
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Table A1. Cont.

Year RF Parameters ANN Parameters

Mtry Trees Max_Depth Hidden
Layers Epochs Neurons

per Layer

2005 1 3000 30 1 904 8
2006 1 3000 30 2 804 6-6
2007 1 3000 30 2 504 8-8
2008 1 3000 7 2 903 3-2
2009 1 3000 30 1 704 2
2010 1 3000 30 1 904 3
2011 1 3000 30 2 905 5-5
2012 1 3000 30 1 604 3
2013 1 3000 30 2 1003 4-2
2014 1 3000 30 1 804 10
2015 1 3000 30 2 904 6-6
2016 1 3000 30 2 804 4-4
2017 1 3000 30 2 1004 3-2
2018 1 3000 30 1 803 2
2019 1 3000 30 2 504 10-10
2020 1 3000 30 2 1005 3-3
2021 1 3000 30 2 904 4-3
2022 1 3000 30 1 603 12
2023 1 3000 30 2 504 8-8

Table A2. Parameters of the SVR and XGBoost models.

Year SVR Parameters XGBoost Parameters
σ C ε Min_n Tree.Depth Learn_Rate Loss.Reduction

2000 0.01 1 0.001 8 8 0.0052511 5.85 × 10−5

2001 0.01 1 0.001 30 13 0.00989746 0.34308064
2002 0.01 1 0.001 11 10 0.00602343 7.83 × 10−8

2003 0.01 1 0.001 20 9 0.00746615 1.06 × 10−10

2004 0.01 1 0.001 15 5 0.09011734 0.04092907
2005 0.01 1 0.001 8 8 0.00515634 1.74 × 10−10

2006 0.01 1 0.001 21 11 0.01865139 0.8246732
2007 0.01 1 0.001 4 6 0.00828647 6.40 × 10−10

2008 0.01 1 0.001 28 11 0.03561075 0.07489249
2009 0.01 1 0.001 36 7 0.05246322 0.10571014
2010 0.01 1 0.001 18 10 0.0075247 2.95 × 10−6

2011 0.01 1 0.001 33 11 0.0079609 4.80 × 10−7

2012 0.01 1 0.001 19 12 0.00557426 3.80 × 10−9

2013 0.01 1 0.001 35 15 0.00771763 0.26072018
2014 0.01 1 0.001 3 9 0.06530932 0.11592727
2015 0.01 1 0.001 23 13 0.00589396 5.01 × 10−9

2016 0.01 1 0.001 36 7 0.05246322 0.10571014
2017 0.01 1 0.001 21 11 0.01865139 0.8246732
2018 0.01 1 0.001 15 8 0.00967407 2.57 × 10−7

2019 0.01 1 0.001 27 11 0.04011186 0.15475962
2020 0.01 1 0.001 16 12 0.00437732 0.00017414
2021 0.001 1 0.001 15 14 0.0055972 1.29 × 10−7

2022 0.01 1 0.001 21 12 0.03830943 0.07938781
2023 0.01 1 0.001 32 11 0.00494699 0.00513382
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Table A3. Parameters of the KNN models.

Year KNN Parameters
Neighbors weight_func deg_free_H deg_free_T Neighbors

2000 26 triangular 18 18 26
2001 37 triangular 2 4 37
2002 39 triweight 5 6 39
2003 26 biweight 16 17 26
2004 36 triweight 15 18 36
2005 14 biweight 2 2 14
2006 34 triweight 2 3 34
2007 30 triweight 4 4 30
2008 50 biweight 17 14 50
2009 20 optimal 3 2 20
2010 40 triweight 2 2 40
2011 31 triweight 10 12 31
2012 41 biweight 10 11 41
2013 41 triweight 7 8 41
2014 50 triangular 10 10 50
2015 23 biweight 3 2 23
2016 36 biweight 2 3 36
2017 50 triangular 10 10 50
2018 33 biweight 18 18 33
2019 22 triangular 4 3 22
2020 14 inv 18 18 14
2021 14 inv 18 18 14
2022 50 triweight 13 17 50
2023 47 triweight 14 11 47

Appendix B
Standardization and Recovery of the Original Scale in the MLR Model.
The fitted model is expressed in Equation (A1), where the variables have been stan-

dardized according to Equations (A2)–(A4).

[ln(Pwave)]
∗ = a′ + b′·[ln(Hs)]

∗ + c′·[ln(Te)]
∗ (A1)

[ln(Pwave)]
∗ =

ln(Pwave)− µln(Pwave)

σln(Pwave)
(A2)

[ln(Hs)]
∗ =

ln(Hs)− µln(Hs)

σln(Hs)
(A3)

[ln(Te)]
∗ =

ln(Te)− µln(Te)

σln(Te)
(A4)

Here, µ and σ represent the mean and standard deviation, respectively, of the unstan-
dardized variables.

The goal is to derive Equation (A5), where the model parameters are expressed at the
original scale.

ln(Pwave) = a + b·ln(Hs) + c·ln(Te) (A5)

From Equation (B2), we isolate ln(Pwave), as shown in Equation (A6).

ln(Pwave) = [ln(Pwave)]
∗·σln(Pwave) + µln(Pwave) (A6)
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Substituting Equation (A1) into Equation (A6) gives (A7).

ln(Pwave) =
{

a′ + b′·[ln(Hs)]
∗ + c·[ln(Te)]

∗}·σln(Pwave) + µln(Pwave) (A7)

Substituting Equations (A3) and (A4) into Equation (A7), and rearranging, we obtain
Equation (A8).

ln(Pwave) = µln(Pwave) + a′·σln(Pwave) − b′·σln(Pwave)·
µln(Hs)

σln(Hs)
− c′·

µln(Te)

σln(Te)︸ ︷︷ ︸
a

+

b′·
σln(Pwave)

σln(Hs)︸ ︷︷ ︸
b

·ln(Hs) + c′·
σln(Pwave)

σln(Te)︸ ︷︷ ︸
c

·ln(Te)
(A8)

Notes
1 www.gobiernodecanarias.org/energia/info-publica/PTECan_VersionInicial/, accessed on 7 May 2025
2 https://plocan.eu/, accessed on 7 May 2025
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