Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/139858
Título: Boundary currents in the Bransfield Strait: near-surface interbasin water volume and heat exchange
Autores/as: Veny López, Marta 
Aguiar-González, Borja 
Ruiz Urbaneja, Alex 
Pereira Vázquez, Tania 
Puyal Astals, Laia 
Marrero-Díaz, Ángeles 
Clasificación UNESCO: 251007 Oceanografía física
Palabras clave: Antarctic coastal current
Antarctic Peninsula
Boundary current
Bransfield current
Heat transport, et al.
Fecha de publicación: 2025
Proyectos: Impacto biogeoquímico de procesos a mesoescala y submesoescala a lo largo del ciclo de vida de remolinos ciclónicos y anticiclónicos:variabilidad planctónica y productividad 
Dinámica Oceánicay Conectividad Entre El Sistema de Corrientes de Bransfieldy El Sistema de Corrientes de Frontera Oeste Del Mar de Weddell 
Publicación seriada: Frontiers in Marine Science 
Resumen: The Bransfield Strait, located between the Bellingshausen and Weddell seas, serves as a natural laboratory for studying boundary current dynamics and interbasin exchange in polar regions of the world ocean. Using 30 years (1993–2022) of multi-platform satellite data (altimetry, sea surface temperature, air temperature, sea ice coverage, and wind stress), this study examines the near-surface spatiotemporal variability of the Bransfield Current and Antarctic Coastal Current. The Bransfield Current consistently strengthens up to King George Island across all seasons, with volume transport (0-100 m depth) increasing from 0.24–0.33 Sv in the western transect to 0.52–0.64 Sv in the eastern transect in the Bransfield Strait, exhibiting limited seasonal variability, while decreasing downstream as it recirculates around the SSI. In contrast, the Antarctic Coastal Current displays pronounced seasonality, with volume transport oscillating between 0.19–0.38 Sv in the western transect and 0.05–0.33 Sv in the eastern transect in the Bransfield Strait. Heat transport analyses reveal significant asymmetries: the Bransfield Current contributes up to 5.44x1012 W eastward in summer based on a hydrographic climatology constructed from CTD, MEOP, and Argo float measurements (0–100 m depth) and 6.67x1011 W using remotely-sensed sea surface temperature (0–10 m depth). Complementary to this, while smaller in magnitude, the Antarctic Coastal Current peaks at 2.13x1012 W (0–100 m depth) and 2.67x1011 W (0–10 m depth) westward in summer, respectively. Notably, the net heat transport balance approaches zero during winter, likely reflecting periods of reduced interbasin heat exchange driven by homogeneous temperatures and sea ice coverage. Seasonal shifts in near-surface volume and heat balances, driven by wind stress and temperature gradients, highlight the critical role of these boundary currents in shaping local hydrography and sea ice dynamics. Lastly, the evaluation of two global ocean reanalysis products (GLORYS12V1 and HYCOM) reveals their inability to accurately represent the Bransfield Strait circulation, emphasizing the need for high-resolution observational data and improved models to better resolve boundary current dynamics. These findings establish a comprehensive baseline for assessing climate-driven changes in the near-surface layers of the boundary currents that exchange water masses with distinct properties between basins in the Antarctic Peninsula region.
URI: https://accedacris.ulpgc.es/handle/10553/139858
ISSN: 2296-7745
DOI: 10.3389/fmars.2025.1555552
Fuente: Frontiers in Marine Science [EISSN 2296-7745],v. 12, (Enero 2025)
Colección:Artículos
Adobe PDF (7,76 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.