Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/139858
Campo DC Valoridioma
dc.contributor.authorVeny López, Martaen_US
dc.contributor.authorAguiar-González, Borjaen_US
dc.contributor.authorRuiz Urbaneja, Alexen_US
dc.contributor.authorPereira Vázquez, Taniaen_US
dc.contributor.authorPuyal Astals, Laiaen_US
dc.contributor.authorMarrero-Díaz, Ángelesen_US
dc.date.accessioned2025-06-10T16:42:34Z-
dc.date.available2025-06-10T16:42:34Z-
dc.date.issued2025en_US
dc.identifier.issn2296-7745en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139858-
dc.description.abstractThe Bransfield Strait, located between the Bellingshausen and Weddell seas, serves as a natural laboratory for studying boundary current dynamics and interbasin exchange in polar regions of the world ocean. Using 30 years (1993–2022) of multi-platform satellite data (altimetry, sea surface temperature, air temperature, sea ice coverage, and wind stress), this study examines the near-surface spatiotemporal variability of the Bransfield Current and Antarctic Coastal Current. The Bransfield Current consistently strengthens up to King George Island across all seasons, with volume transport (0-100 m depth) increasing from 0.24–0.33 Sv in the western transect to 0.52–0.64 Sv in the eastern transect in the Bransfield Strait, exhibiting limited seasonal variability, while decreasing downstream as it recirculates around the SSI. In contrast, the Antarctic Coastal Current displays pronounced seasonality, with volume transport oscillating between 0.19–0.38 Sv in the western transect and 0.05–0.33 Sv in the eastern transect in the Bransfield Strait. Heat transport analyses reveal significant asymmetries: the Bransfield Current contributes up to 5.44x1012 W eastward in summer based on a hydrographic climatology constructed from CTD, MEOP, and Argo float measurements (0–100 m depth) and 6.67x1011 W using remotely-sensed sea surface temperature (0–10 m depth). Complementary to this, while smaller in magnitude, the Antarctic Coastal Current peaks at 2.13x1012 W (0–100 m depth) and 2.67x1011 W (0–10 m depth) westward in summer, respectively. Notably, the net heat transport balance approaches zero during winter, likely reflecting periods of reduced interbasin heat exchange driven by homogeneous temperatures and sea ice coverage. Seasonal shifts in near-surface volume and heat balances, driven by wind stress and temperature gradients, highlight the critical role of these boundary currents in shaping local hydrography and sea ice dynamics. Lastly, the evaluation of two global ocean reanalysis products (GLORYS12V1 and HYCOM) reveals their inability to accurately represent the Bransfield Strait circulation, emphasizing the need for high-resolution observational data and improved models to better resolve boundary current dynamics. These findings establish a comprehensive baseline for assessing climate-driven changes in the near-surface layers of the boundary currents that exchange water masses with distinct properties between basins in the Antarctic Peninsula region.en_US
dc.languageengen_US
dc.relationImpacto biogeoquímico de procesos a mesoescala y submesoescala a lo largo del ciclo de vida de remolinos ciclónicos y anticiclónicos:variabilidad planctónica y productividaden_US
dc.relationDinámica Oceánicay Conectividad Entre El Sistema de Corrientes de Bransfieldy El Sistema de Corrientes de Frontera Oeste Del Mar de Weddellen_US
dc.relation.ispartofFrontiers in Marine Scienceen_US
dc.sourceFrontiers in Marine Science [EISSN 2296-7745],v. 12, (Enero 2025)en_US
dc.subject251007 Oceanografía físicaen_US
dc.subject.otherAntarctic coastal currenten_US
dc.subject.otherAntarctic Peninsulaen_US
dc.subject.otherBoundary currenten_US
dc.subject.otherBransfield currenten_US
dc.subject.otherHeat transporten_US
dc.subject.otherVolume transporten_US
dc.titleBoundary currents in the Bransfield Strait: near-surface interbasin water volume and heat exchangeen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3389/fmars.2025.1555552en_US
dc.identifier.scopus105002238321-
dc.identifier.isi001461855900001-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid57221522902-
dc.contributor.authorscopusid37461138000-
dc.contributor.authorscopusid59730533400-
dc.contributor.authorscopusid58951146500-
dc.contributor.authorscopusid59730379100-
dc.contributor.authorscopusid6507074043-
dc.identifier.eissn2296-7745-
dc.relation.volume12en_US
dc.investigacionCienciasen_US
dc.type2Artículoen_US
dc.contributor.daisngid29731329-
dc.contributor.daisngid55112036-
dc.contributor.daisngid72888489-
dc.contributor.daisngid56643302-
dc.contributor.daisngid73006218-
dc.contributor.daisngid1645596-
dc.description.numberofpages16en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Veny, M-
dc.contributor.wosstandardWOS:Aguiar-González, B-
dc.contributor.wosstandardWOS:Ruiz-Urbaneja, A-
dc.contributor.wosstandardWOS:Pereira-Vázquez, T-
dc.contributor.wosstandardWOS:Puyal-Astals, L-
dc.contributor.wosstandardWOS:Marrero-Díaz, A-
dc.date.coverdateEnero 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-BASen_US
dc.description.sjr0,907
dc.description.jcr2,8
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds10,3
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Física-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptGIR ECOAQUA: Ecofisiología de Organismos Marinos-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptGIR ECOAQUA: Oceanografía Física y Geofísica Aplicada-
crisitem.author.deptIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.deptDepartamento de Física-
crisitem.author.orcid0000-0001-9086-3528-
crisitem.author.orcid0000-0002-2064-1724-
crisitem.author.orcid0000-0002-0922-5340-
crisitem.author.orcid0009-0006-5670-3911-
crisitem.author.orcid0000-0001-7697-0036-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.parentorgIU de Investigación en Acuicultura Sostenible y Ec-
crisitem.author.fullNameVeny López, Marta-
crisitem.author.fullNameAguiar González, Miguel Borja-
crisitem.author.fullNameRuiz Urbaneja, Alex-
crisitem.author.fullNamePereira Vázquez, Tania-
crisitem.author.fullNamePuyal Astals, Laia-
crisitem.author.fullNameMarrero Díaz, María De Los Ángeles-
crisitem.project.principalinvestigatorArístegui Ruiz, Javier-
crisitem.project.principalinvestigatorAguiar González, Miguel Borja-
Colección:Artículos
Adobe PDF (7,76 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.