Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/139849
DC FieldValueLanguage
dc.contributor.authorMoro, Ornellaen_US
dc.contributor.authorGram, Inger Torhilden_US
dc.contributor.authorLochen, Maja-Lisaen_US
dc.contributor.authorVeierod, Marit B.en_US
dc.contributor.authorWägner, Anna Maria Claudiaen_US
dc.contributor.authorSebastiani, Giovannien_US
dc.date.accessioned2025-06-10T15:24:09Z-
dc.date.available2025-06-10T15:24:09Z-
dc.date.issued2025en_US
dc.identifier.issn0962-2802en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139849-
dc.description.abstractFuture occurrence of a disease can be highly influenced by some specific risk factors. This work presents a comprehensive approach to quantify the event probability as a function of each separate risk factor by means of a parametric model. The proposed methodology is mainly described and applied here in the case of a linear model, but the non-linear case is also addressed. To improve estimation accuracy, three distinct methods are developed and their results are integrated. One of them is Bayesian, based on a non-informative prior. Each of the other two, uses aggregation of sample elements based on their factor values, which is optimized by means of a different specific criterion. For one of these two, optimization is performed by Simulated Annealing. The methodology presented is applicable across various diseases but here we quantify the risk for cardiovascular diseases in subjects with type 1 diabetes. The results obtained combining the three different methods show accurate estimates of cardiovascular risk variation rates for the factors considered. Furthermore, the detection of a biological activation phenomenon for one of the factors is also illustrated. To quantify the performances of the proposed methodology and to compare them with those from a known method used for this type of models, a large simulation study is done, whose results are illustrated here.en_US
dc.languageengen_US
dc.relation.ispartofStatistical Methods in Medical Researchen_US
dc.sourceStatistical Methods In Medical Research[ISSN 0962-2802], (Mayo 2025)en_US
dc.subject32 Ciencias médicasen_US
dc.subject320501 Cardiologíaen_US
dc.subject.otherMyocardial-Infarctionen_US
dc.subject.otherPredictionen_US
dc.subject.otherSmokingen_US
dc.subject.otherRisk Quantificationen_US
dc.subject.otherRisk Factor Analysisen_US
dc.subject.otherSimulated Annealingen_US
dc.subject.otherDoseresponse Curveen_US
dc.subject.otherBayesian Statisticsen_US
dc.titleQuantification of the influence of risk factors with application to cardiovascular diseases in subjects with type 1 diabetesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1177/09622802251327680en_US
dc.identifier.scopus105005854944-
dc.identifier.isi001491820200001-
dc.contributor.orcid0000-0002-3607-1797-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-2083-2758-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid59699000000-
dc.contributor.authorscopusid57191812859-
dc.contributor.authorscopusid7003604996-
dc.contributor.authorscopusid35417291900-
dc.contributor.authorscopusid58862926200-
dc.contributor.authorscopusid55726922900-
dc.identifier.eissn1477-0334-
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.contributor.daisngid57353434-
dc.contributor.daisngid29209981-
dc.contributor.daisngid15535716-
dc.contributor.daisngid1737403-
dc.contributor.daisngid75649029-
dc.contributor.daisngid16379562-
dc.description.numberofpages19en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Moro, O-
dc.contributor.wosstandardWOS:Gram, IT-
dc.contributor.wosstandardWOS:Lochen, ML-
dc.contributor.wosstandardWOS:Veierod, MB-
dc.contributor.wosstandardWOS:Wägner, AM-
dc.contributor.wosstandardWOS:Sebastiani, G-
dc.date.coverdateMayo 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr1,235
dc.description.jcr1,6
dc.description.sjrqQ1
dc.description.jcrqQ1
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.orcid0000-0002-7663-9308-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameWägner, Anna Maria Claudia-
Appears in Collections:Artículos
Adobe PDF (1,42 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.