Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/139843
Título: A Bayesian Belief Network model for the estimation of risk of cardiovascular events in subjects with type 1 diabetes
Autores/as: Moro, Ornella
Gram, Inger Torhild
Løchen, Maja Lisa
Veierød, Marit B.
Wägner, Anna Maria Claudia 
Sebastiani, Giovanni
Clasificación UNESCO: 32 Ciencias médicas
320501 Cardiología
Palabras clave: Bayesian Belief Network
Cardiovascular Diseases
Cox Proportional Hazard Model
Risk Assessment
Simulation Study, et al.
Fecha de publicación: 2025
Publicación seriada: Computers in biology and medicine 
Resumen: Objectives: Cardiovascular diseases (CVDs) represent a major risk for people with type 1 diabetes (T1D). Our aim here is to develop a new methodology that overcomes some of the problems and limitations of existing risk calculators. First, they are rarely tailored to people with T1D and, in general, they do not deal with missing values for any risk factor. Moreover, they do not take into account information on risk factors dependencies, which is often available from medical experts. Method: This study introduces a Bayesian Belief Network (BBN) model to quantify CVD risk in individuals with T1D. The developed methodology is applied to a large T1D dataset and its performances are assessed. A simulation study is also carried out to quantify the parameter estimation properties. Results: The performances of individual risk estimation, as measured by the area under the ROC curve and by the C-index, are about 0.75 for both real and simulated data with comparable sample sizes. Conclusions: We observe a good predictive ability of the proposed methodology with accurate parameter estimation. The BBN approach takes into account causal relationships between variables, providing a comprehensive description of the system. This makes it possible to derive useful tools for optimising intervention.
URI: https://accedacris.ulpgc.es/handle/10553/139843
ISSN: 0010-4825
DOI: 10.1016/j.compbiomed.2025.109967
Fuente: Computers in Biology and Medicine[ISSN 0010-4825],v. 190, (Mayo 2025)
Colección:Artículos
Adobe PDF (1,85 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.