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 A B S T R A C T

Objectives: Cardiovascular diseases (CVDs) represent a major risk for people with type 1 diabetes (T1D). Our 
aim here is to develop a new methodology that overcomes some of the problems and limitations of existing risk 
calculators. First, they are rarely tailored to people with T1D and, in general, they do not deal with missing 
values for any risk factor. Moreover, they do not take into account information on risk factors dependencies, 
which is often available from medical experts.
Method: This study introduces a Bayesian Belief Network (BBN) model to quantify CVD risk in individuals 
with T1D. The developed methodology is applied to a large T1D dataset and its performances are assessed. A 
simulation study is also carried out to quantify the parameter estimation properties.
Results: The performances of individual risk estimation, as measured by the area under the ROC curve and 
by the C-index, are about 0.75 for both real and simulated data with comparable sample sizes.
Conclusions: We observe a good predictive ability of the proposed methodology with accurate param-
eter estimation. The BBN approach takes into account causal relationships between variables, providing 
a comprehensive description of the system. This makes it possible to derive useful tools for optimising 
intervention.
1. Introduction

Type 1 diabetes (T1D), also known as insulin-dependent diabetes, 
is an autoimmune metabolic disease characterised by chronic high 
blood glucose concentration. In this disease, insulin, which controls 
blood glucose concentration, is not produced by the pancreas, requiring 
intensive injections [1]. Cardiovascular disease (CVD) is a leading cause 
of morbidity and mortality worldwide, with an estimated 19.8 million 
of deaths from CVD in 2022 [2,3]. People with T1D are at increased risk 
of developing CVD due to the effects of chronic hyperglycaemia [4–9].

Risk of CVD for individuals with T1D can be reduced by improving 
the control of hypoglycaemia and adopting a healthy lifestyle, such as 
quitting smoking or increasing physical activity [10–12]. Personalised 
risk prediction methods, specifically developed for people with T1D, 
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can be an important tool to help these individuals prevent the occur-
rence of CVD events. There are several validated risk calculators (RCs) 
that estimate the risk of CVD in a certain time span. Two of the most 
commonly used are the NORRISK2 [13], for the general population, 
and the STENO1 [4], for people with T1D.

Most of these RCs are based on the Cox proportional hazard (CPH) 
model [14], which describes the evolution of risk over time given the 
values of some risk factors. However, among the available RCs, only 
a couple of them are specifically designed for people with T1D [4]. 
Moreover, in the standard application of the CPH, there is no need to 
consider the dependence between the factors involved, while this is 
relevant when focusing on the dependence of the output on a subset 
of factors. Another example is related to the estimation of the risk for 
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a new patient when there are missing values for some factors, which 
are usually replaced by their population means.

A possible alternative to the CPH model is to adopt a Bayesian Belief 
Network (BBN), as done here. We remark that BBN is the most suited 
type of statistical model to take into account the causal relationships 
between the factors. This also allows to cope with missing values and 
to estimate the dependence of the output on any subset of factors for 
all possible combinations of their values. Information on the causal de-
pendencies between factors can often be provided by medical experts. 
However, it cannot be used by the CPH, which is the basic model of 
standard RCs. The situation is the same if one wants to use a model 
belonging to Artificial Intelligence (AI), e.g. Deep Learning (DL), which 
is now being successfully applied in many different fields. In addition, 
such models require much larger data samples for training than those 
used here. In fact, DL has recently been successfully applied to predict 
CVD events in subjects with T1D [15]. However, there the model is 
trained with a very large sample.

The use of BBN in medical science has become progressively more 
frequent in various fields [16–21]. In recent years, some studies have 
also proposed BBN models to predict the risk of occurrence of non-
communicable diseases, such as cancer or CVD. Stojadinovic and col-
leagues [22] developed a BBN-based model to perform prognostic 
assessment for colon carcinomatosis and decision-making for conse-
quent treatment. They applied the model proposed to a sample of 53 
patients and performed a 10-fold cross-validation procedure [23,24]. 
The overall area under the receiver operating characteristic (ROC) 
curve (AUC) [25] obtained was equal to 0.71, while the sensitivity and 
specificity values were 68.3% and 63.3%, respectively. There are also 
a couple of works using BBN model to describe probabilistically the 
relationships between CVD events and some related risk factors [26,
27].

The first of the two methods above used a Dynamical Bayesian 
Network to perform prognosis for coronary heart disease (CHD) and 
applied it to a longitudinal dataset of about 850 middle-aged men. 
Dynamical Bayesian Networks are an extension of BBNs structured to 
include time, whose use in medical application is increasing [28–30]. In 
this case, the risk of a given event at time 𝑡 was estimated based on the 
patient’s medical history before that time. The authors proposed two 
variations of the model, one using time point data and one including 
temporal abstractions (TAs) which are high-level temporal concepts 
obtained from point time data [31]. Given the low probability of the 
event considered, the sample population resulted highly imbalanced 
towards the subjects who did not experience any event. Thus, four dif-
ferent types of resampling techniques were applied to the real dataset 
obtaining a total of five different datasets. The two variations of the 
model were then tested on all the five samples using a 10-fold cross-
validation procedure. The maximum sensitivity value obtained was 
75%, which corresponded to the application of the model with TAs to 
one of the resampled dataset. For this same dataset, they also built the 
ROC curve and calculate the AUC: 0.60 and 0.78 for the model without 
and with TAs, respectively. The overall performances of the model 
showed a good prediction ability for CHD events and the used approach 
resulted very promising from the medical point of view. However, 
the performances dropped substantially when considering the model 
without TAs where the maximum sensitivity obtained was 63%. This 
could represent a strong limitation, given that the effective use of the 
TAs version requires a high number of records per subject over time 
and a low proportion of missing values. Furthermore, the performance 
values depended on the resampling technique used, for both model 
types. Indeed, the sensitivity value for the model including TAs ranged 
between 52% and 75%, while the model without TAs fluctuated from 
38% to 63%.

In the second study, Ordovas et al. [27] developed a BBN to describe 
the relationships between a disease, i.e. diabetes, and two medical 
abnormalities, i.e. hypertension and hypercholesterolemia, and ten re-
lated factors, both modifiable and non-modifiable. A first structure of 
2 
the BBN was retrieved using the Greedy Thick Thinning algorithm [32]. 
The resulting version was then critically modified by medical experts. 
To estimate the parameters of the model (i.e. the local conditional prob-
abilities), the authors applied a Bayesian approach using a multinomial-
Dirichlet distribution with uniform prior. However, the setup and the 
main objectives of this work are quite different from ours. First, we only 
consider subjects with T1D. Instead, in the cited work, subjects with 
type 1, type 2 and no diabetes are included. Furthermore, we predict 
probabilistically future outcomes (within 7 years) of CVD events, e.g. 
stroke, myocardial infarction, based on the values of some risk factors 
in recent past (5 years). In contrast, in the work of Ordovas et al. no 
prediction is performed. Furthermore, the whole set of (13) variables 
considered for each subject, including also those for the disease and the 
medical abnormalities considered, are relative to the same time. More 
precisely, they cumulate data acquired within a 5-year interval, after 
checking homogeneity with respect to time.

In this study, we propose a new methodology for the quantification 
of the risk of CVD events in people with T1D:

• A specific BBN model for CVD events in people with T1D, devel-
oped in close collaboration with medical experts, is adopted here 
for the first time.

• In contrast to existing RCs for the above scope, the BBN model 
takes into account dependencies between risk factors.

• Instead of providing risk score, as done by standard RCs, we 
quantify the risk in terms of a real number, i.e. probability value.

• One component of the BBN model incorporates the basic mathe-
matical expression of the CPH model.

• The method also copes with the case when the values of some 
factors are missing.

• Unlike known RCs, after statistical inference is drawn, the prob-
ability of the event under study conditioned on any subset of 
factors can be computed, which can be useful for intervention.

The training and testing of the model is performed on a large 
dataset of about 1300 subjects with T1D [33]. This is also done in 
the case where the values of some factors are missing. To quan-
tify the performances of the estimation process, a simulation study is 
performed.

2. Models and methods

Below, we start giving some details of the CPH model and of the 
relative parameter inference. In fact, we will adopt it in the BBN model 
for the conditional probability of the output (CVD), given the factors. 
Then, we focus on the BBN model, also describing the parameter 
estimation procedure. Finally, we illustrate the methods used here to 
quantify the performances of the proposed methodology.

2.1. CPH model

The CPH model assumes that, given the time 𝑇𝐸 of first occurrence 
of an event 𝐸, the hazard function ℎ(𝑡), defined as 

ℎ(𝑡) = lim
𝛥→0+

(𝑡 ≤ 𝑇𝐸 < 𝑡 + 𝛥 ∣ 𝑡 ≤ 𝑇𝐸 )
𝛥

, (1)

can be expressed as a product of two separate functions ℎ0(𝑡) and 
𝜌(𝒙) [14]. The first one is the baseline hazard function and depends 
only on the time, whereas the second is a function of some covariates 
(risk factors) 𝒙
ℎ(𝑡) ∶= ℎ𝒙(𝑡) = ℎ0(𝑡) ⋅ 𝜌(𝒙). (2)

As a consequence, the survival function 𝑆(𝑡) = (𝑇𝐸 ≥ 𝑡) can be 
expressed as 

𝑆(𝑡) = 𝑒− ∫ 𝑡
0 ℎ𝒙(𝑢)𝑑𝑢 = 𝑆 (𝑡)𝜌(𝒙), (3)
0
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where 𝑆0(𝑡) = 𝑒− ∫ 𝑡
0 ℎ0(𝑢)𝑑𝑢 is the baseline survival function. A common 

choice, also made here, corresponds to a Weibull distribution for the 
baseline survival 𝑆0(𝑡) ∶= 𝑒−

𝑡 𝜅
𝛾 , which leads to the following survival 

function 

𝑆(𝑡) = 𝑒−
𝑡 𝜅
𝛾 ⋅𝜌(𝒙). (4)

The most frequently used parametric model for the covariate function 
𝜌 ∶= 𝜌(𝒙; 𝜷), which we also adopt here, is the exponential one: 
𝜌(𝒙; 𝜷) = 𝑒𝜷

𝑇 𝒙, (5)

where 𝜷 is a parameter vector, and 𝑇  indicates the transposition.
To estimate the model parameters, longitudinal data are usually 

used. Following Cox’s approach, we first estimate the 𝜷 parameters by 
maximising the partial likelihood of the data [14]. To build it, suppose 
we have 𝑛 individuals, of which 𝑑 experienced the event. For the 𝑖th 
individual, among the 𝑑 who experienced the event 𝐸, let 𝑡𝑖 denote the 
first time the event occurred. For all the remaining 𝑛−𝑑 individuals, the 
time 𝑡𝑖 represents their censoring time. In fact, some of the individuals 
not experiencing the event during the study may have left it before its 
end. Note that uncensored individuals not experiencing the event until 
the final time are here considered ‘censored’ at that time. The partial 
likelihood is then expressed as follows [14] 

𝑝(𝜷) =
𝑑
∏

𝑗=1

𝜌(𝒙𝑗 ; 𝜷)
∑

𝑘∶𝑡𝑘≥𝑡𝑗

𝜌(𝒙𝑘; 𝜷)
. (6)

In this case, the product is indexed only over the 𝑑 individuals expe-
riencing the event, while the contributions of the others appear in the 
denominator. The estimated values 𝜷̂ of the parameters are obtained 
by maximising the partial likelihood: 
𝜷̂ = argmax

𝜷
𝑝(𝜷). (7)

Now, we can plug these estimates into the full likelihood to estimate 
the remaining parameter vector 𝝉 = (𝛾, 𝜅) of the baseline survival 
𝑆0(⋅). In that likelihood, the contributions of censored and uncensored 
individuals multiply as follows 
(𝜷̂, 𝝉) =

∏

𝑢𝑛𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑
𝑓 (𝑡𝑖; 𝜷̂)

∏

𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑
𝑆(𝑡𝑖; 𝜷̂), (8)

where 𝑓 (𝑡𝑖; 𝜷) = −𝑆′(𝑡𝑖) and the times 𝑡𝑖 are defined as above. The 
values 𝝉̂ are obtained maximising the likelihood function in Eq. (8)
𝝉̂ = argmax

𝝉
(𝜷̂, 𝝉). (9)

In the followings, for different purposes, we will use an empirical 
version of the survival curve. Due to the presence of censoring, the 
Kaplan–Meier (KM) estimator [34] is almost always the one adopted to 
estimate the survival curve, as done here. This is due to its versatility, 
as it is a non-parametric estimator. In addition, the way it is obtained, 
i.e. by a product over measured and censoring times, allows to take into 
account data censored up to each of those times. Furthermore, it has 
been proven [35,36] that the asymptotic properties of this estimator 
are close to those of other parametric and non-parametric ones.

2.2. BBN model

One of the two main elements of a BBN model is a directed acyclic 
graph (DAG), whose nodes represent the variables describing the sys-
tem under study and whose directed edges represent the causal rela-
tionships between them [37]. Here, a generic node represents either 
the variable corresponding to the output event (CVD) or one of the risk 
factors. The set of all variables is denoted here by 𝒙 = (𝐶𝑉 𝐷,𝒙𝑓 ), where 
CVD is the output node and 𝒙𝑓  the set of all risk factors. Note that the 
symbol 𝒙𝑓  used here corresponds to the one 𝒙 used in the previous 
section. Each variable is here considered random. The second element 
of a BBN is represented by the so-called local conditional probabilities. 
3 
These are the conditional probabilities of each factor, given its parents, 
according to the DAG structure. As usual, a node 𝐴 is parent of a node 𝐵
if there exists a directed arrow from 𝐴 to 𝐵, meaning that 𝐵 is causally 
dependent on 𝐴. Assigned the two elements of a BBN, we are able to 
express the joint probability of the whole set of factors as a product of 
the local conditional probabilities. We can in general express the joint 
probability of a BBN model as follows: 
(𝒙) = (𝑥1,… , 𝑥ℎ) =

∏

𝑗
(𝑥𝑗 ∣ 𝑝𝑎𝑗 ), (10)

where, for simplicity, we denote by (𝒙) the probability that 𝑿 assumes 
the value 𝒙, and by (𝑥𝑗 ∣ 𝑝𝑎𝑗 ) the probability that the variable 𝑋𝑗
assumes the value 𝑥𝑗 given that the set of its parent variables 𝑎𝑗
assumes the configuration 𝑝𝑎𝑗 .

To retrieve the structure of the DAG, there are different approaches, 
which can be data-driven, expert-based, or a combination of both (see 
for example [38]). In our case, we take the second choice and the result 
is shown in Fig.  1. Finding the structure of the DAG consists of drawing 
oriented edges between pairs of variables. The comprehensive list of 
dependencies for the DAG in Fig.  1 is presented in Figure S1 of the 
Supplementary material. The presence of each edge here is justified by 
the existence of a physiological process. All the processes involved have 
been intensively discussed with clinicians and epidemiologists of the 
WARIFA project [39].

The estimation procedure for such a complex graph requires a huge 
computational cost. Furthermore, one main scope of this work consists 
of being beneficial like the risk calculators STENO1 [4] (for people 
with T1D) and NORRISK2 [13] (for general population), through an 
app developed within the WARIFA project. Therefore, the inclusion 
of a high number of covariates may be not at all ideal both for the 
parameters estimation and/or to retrieve information for a new user 
when computing the risk probability. Hence, we proceed as follows. 
Starting from the original DAG in Fig.  1, we also consider the two 
RCs for CVD cited above (STENO1 and NORRISK2). We then select 
the intersection of the sets of variables used in both these RCs and 
in our DAG. These are age (AGE), sex at birth (SEX), smoking status 
(SM) and systolic blood pressure (SBP). All the three considered models 
include also some information on cholesterol levels. In our DAG we 
have both low-density lipoprotein (LDL) and high-density lipoprotein 
(HDL) cholesterol, the NORRISK2 uses the HDL cholesterol and the 
total cholesterol, while the STENO1 includes only the LDL cholesterol. 
Although the intersection in this case is empty, we prefer to keep both 
LDL and HDL cholesterol in the model. Indeed, they are quantifying the 
phenomenon of dyslipidaemia which plays a major role in CVD events.

Since the large database available to us is regarding individuals with 
T1D, we additionally include some factors specific for this population. 
Of the two RCs considered, only the STENO1 is designed for people 
with T1D. The variables of interest for diabetes considered there are 
albuminuria, estimated glomerular filtration rate, diabetes duration and 
glycated haemoglobin level (HBA1C). Among those, only HBA1C and 
diabetes duration are also included in our original DAG in Fig.  1. We 
decide to exclude the diabetes duration from the analysis since the 
sample population that we are using is composed of very young people, 
whose age is highly correlated with the duration of diabetes.

The resulting DAG of the BBN model used in the following, which 
corresponds to the above set of variables, derived from the original one 
in Fig.  1, is shown in Fig.  2. We notice that the resulting DAG is not 
exactly the induced sub-graph relative to the included factors. Indeed, 
in a preliminary analysis of the real dataset, we do not find some 
of the dependencies drawn in the chosen DAG. Therefore, in all the 
following results, we omit them. In particular, HDL depends uniquely 
on SM and SEX, and neither SBP nor LDL depend on SM. All the other 
dependencies are kept the same. On the other hand, based on the same 
analysis, some additional arrows are included. More in details, both 
HBA1C and SEX are assumed directly influencing the output node CVD. 
As for the original DAG, in Figure S2 of the Supplementary material we 
report the list of dependencies for the reduced subDAG.
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Fig. 1. The original DAG representing causal relationships between pairs of variables for CVD in individuals with T1D. On the three different planes of each figure are reported the 
variables of different classes. The left plane contains all the modifiable variables, the horizontal plane contains the variables describing the clinical measurements of the subjects 
and the right plane contains the non-modifiable variables. The dotted arrows are those relative to the direct effects of the factors on the output node (CVD). All the other colours 
and styles of the arrows are used to improve readability of the DAG. For the meaning of the acronyms, see the description in the text or the list of acronyms at the end of the 
paper.
Fig. 2. The subDAG relative to a subset of factors from the complete DAG in Fig.  1. The 3-dimensional organisation of the DAG and the meaning of different arrows are the same 
as in the caption of Fig.  1.
The seven risk factors considered are of different types. The one 
of the output node, i.e. the first time of adverse event occurrence, 
SBP, LDL, HDL and HBA1C are continuous. The SM and SEX variables 
are binary. The only discrete variable is AGE. The cost required for 
parameter estimation and some computation with the BBN model, 
e.g. the population risk, is high. Therefore, we compute the local 
conditional probability of the continuous variable discretising their 
supports in subintervals. Specifically, we divide the measured ranges 
of each factor into equally sized intervals of a length 𝛿 specific to 
each factor. In particular, for HBA1C we choose 𝛿 = 0.5%, for LDL 
and HDL 𝛿 is equal to 10 and 5 mg/dL, respectively, and for SBP it is 
equal to 10 mmHg. Furthermore, there is evidence in literature [40] 
showing that while lower values of HDL may increase the risk of 
CVD, increasing these values does not necessarily protect against such 
adverse events. Therefore, following a similar approach to the one used 
in the NORRISK2 [13], we set HDL values greater than 50 mg/dL 
exactly equal to this value.
4 
We now focus on the chosen local probability models for the BBN 
in Fig.  2. We consider the DAG of this BBN as a union between two 
different subDAGs. The first one, DAG𝑜, models the dependency of the 
output (CVD) on the covariates (𝑿𝒇 ). The second one, DAG𝑓 , gives 
us the dependencies among the set of risk factors. We first focus on 
the local probability models related to DAG𝑓 , denoted in the follow-
ings by (𝑿𝑓 ). We recall that, as usual for this type of models, the 
joint distribution is obtained as a product of marginal and conditional 
distributions.

First, we have to consider the marginal distributions of the three 
root variables (variables without parents), i.e. AGE, SEX and HBA1C. 
We model SEX as a Bernoulli random variable and AGE by a probability 
mass function. For the last variable (HBA1C) we use a discretisation of 
a continuous Gamma distribution. Then, we cope with the conditional 
probability models. Looking at the reduced DAG𝑓  in Fig.  2, we notice 
three different patterns of the relationship children–parents. For one 
of them, we have a binary variable whose parent is also binary: SM 
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whose parent is SEX. In this case, for the two possible values of SEX we 
model SM as a Bernoulli random variable. The second pattern involves 
HDL, which depends on the two binary variables. Here, for the four 
possible combinations of SEX and SM, we model HDL as a discretised 
Gaussian distribution. The last pattern concerns LDL and SBP. Each 
of these two variables depends on one binary and one continuous or 
discrete variable (AGE or HBA1C). For these cases, we proceed as 
follows. For example, for the two possible values of SEX, we model LDL 
as a discretised Gaussian distribution whose expected value is a linear 
function of HBA1C with parameters depending on the combination. We 
proceed similarly for SBP.

Finally, with regard to DAG𝑜, we adopt a CPH model for the 
conditional probability of the output given its parents 𝑿𝑓

(𝐶𝑉 𝐷 ∣ 𝑿𝑓 = 𝒙) = 1 − exp
(

− 𝑡 𝜅

𝛾
⋅ 𝑒𝜷

𝑇 𝒙
)

. (11)

The variables 𝑿𝑓  are used here after their standardisation. As a result, 
the values estimated for the 𝜷 parameters of the linear combination of 
the covariates quantify the relative influence of the factors on the risk.

To estimate the BBN model parameters, we maximise the likelihood 
of the measured longitudinal data. Due to the factorisation of the com-
plete joint distribution, the maximisation can be performed separately 
for each conditional/marginal model appearing in the factorisation. 
Specifically, we proceed as follows. For the variable 𝑋 corresponding to 
each of the two root variables SEX and AGE, we estimate the probability 
𝑝𝑖 ∶= (𝑋 = 𝑖) by its empirical frequency 

𝑝𝑖 =
𝑁𝑖
𝑚

, (12)

where 𝑚 is the total number of observations, 𝑁𝑖 is the number of 
observations for which the variable 𝑋 assumes the value 𝑖 equal to 0,1 
for SEX and for AGE a number between the minimum and the maximum 
of the observed values. For the case 𝑋 = HBA1C, we first estimate the 
shape 𝜅 and the scale 𝜃 parameters of the Gamma distribution by max-
imising the likelihood of the original data, without discretisation. We 
then compute the cumulative Gamma distribution function 𝐹 (⋅ ; 𝜅̂, 𝜃̂)
corresponding to the estimated shape and scale parameters. Given the 
discrete division of the HBA1C range in 𝑀 subintervals 𝐼1,… , 𝐼𝑀  as 
described above, we estimate the probability (𝑋 ∈ 𝐼𝑘) of 𝑋 to belong 
to 𝐼𝑘 = [𝑧𝑘+1, 𝑧𝑘] as 

𝑝̂𝑘 = 𝐹 (𝑧𝑘+1) − 𝐹 (𝑧𝑘). (13)

Finally, since we consider a finite range, we normalise the discrete 
distribution so obtained.

For the conditional model of SM given SEX, we first select the two 
subsamples corresponding to the possible values of SEX. The estimated 
value of the conditional probability 𝑝𝑖𝑗 ∶= (𝑆𝑀 = 𝑖 ∣ 𝑆𝐸𝑋 = 𝑗), for 
𝑖, 𝑗 = 0, 1, is then obtained using the empirical frequency of SM in each 
of the two subsamples. Thus, we have 

𝑝̂𝑖𝑗 =
𝑁𝑖𝑗

𝑚𝑗
, (14)

where 𝑁𝑖𝑗 is the number of observations in the subsample 𝑗 where 
𝑆𝑀 = 𝑖 and 𝑚𝑗 is the size of the subsample 𝑗.

For the conditional model of HDL, we select the four subsamples 
relative to all possible combinations of SEX and SM. For each combi-
nation, we then estimate the parameters of the Gaussian distribution 
maximising the likelihood of the original data without discretisation 
relative to the corresponding subsample. For each of the remaining 
two continuous variables (i.e. LDL and SBP), we first extract the two 
subsamples corresponding to the values of the involved binary parent 
variable. For each of the two cases, we need to estimate the two pa-
rameters of the linear combination providing variable expected value, 
conditioned on the value of the remaining continuous parent variable, 
and the unknown variance. The first two are estimated by maximising 
the likelihood of the assumed conditional model, using each subsample 
of data without discretisation. This corresponds to a least square linear 
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fitting. The constant variance 𝜎2 is estimated as the mean squared 
errors between measured and theoretical values from the estimated 
conditional model. Then, as already done for the marginal distribution 
of HBA1C, we estimate the probability for the child variable to belong 
in a certain subinterval of the discretisation by numerical integration. 
Also in this case, given the finite range of values considered, we 
normalise the discrete distribution obtained.

We estimate the parameters of the CPH model assumed for the 
output, conditioned on its parents, using first the partial and then the 
full likelihood of the system, as explained in Section 2.1. Once all the 
parameters are estimated, we have a full description of the model in 
terms of the joint probability distribution of the system. In particular, 
we can compute the population risk 𝑅(𝑡) as 

𝑅(𝑡) =
∑

𝒙
(𝐶𝑉 𝐷 ∣ 𝑿𝑓 = 𝒙) ⋅ (𝑿𝑓 = 𝒙). (15)

Moreover, from the factor values 𝒙 of a new subject, we can compute 
the individual risk through the conditional probability (𝐶𝑉 𝐷|𝑿𝑓 =
𝒙), using Eq. (11).

2.3. Performance evaluation criteria

To assess the performances of the proposed methodology we con-
sider two indicators: the AUC of the ROC curves [25] and the con-
cordance index or C-index [41] which is obtained as follows. Let us 
consider all ordered pairs of individuals (𝑖, 𝑗), such that the first indi-
vidual 𝑖 experiences the event of interest at a time when the individual 
𝑗 is still at risk. This can happen if both the individuals experience the 
event and 𝑡𝑖 < 𝑡𝑗 , or if the individual 𝑗 is censored at a time 𝑡𝑗 > 𝑡𝑖. A 
pair is considered concordant if the risk estimate 𝑝𝑖 for the individual 
𝑖 is higher than 𝑝𝑗 . The C-index value is the proportion of concordant 
pairs out of all evaluable ones.

We first perform an internal validation where the training and the 
test sets correspond to the whole sample available. We also consider a 
5-fold cross-validation [23,42]. To minimise the differences due to the 
particular 5-fold partition of the sample, we repeat the procedure many 
times and average the results.

In addition to the risk quantification at population or individual 
levels, one might be interested in proposing intervention. This can be 
done based on the event probability conditioned on the values of a 
chosen subset of factors 𝑿̄. To compute the conditional probability of 
the output (CVD) given 𝑿̄, we sum the joint distribution of the BBN 
model with respect to all values of the remaining variables 𝑿𝑓 ⧵ 𝑿̄: 

(𝐶𝑉 𝐷 ∣ 𝑿̄) =

∑

𝑿𝑓 ⧵𝑿̄
(𝐶𝑉 𝐷,𝑿𝑓 )

(𝑿̄)
=

∑

𝑿𝑓 ⧵𝑿̄
(𝐶𝑉 𝐷 ∣ 𝑿𝑓 ) ⋅ (𝑿𝑓 )

(𝑿̄)
. (16)

We can also cope with the case of a new user with missing values 
for a set of factors 𝑿𝑚𝑖𝑠𝑠. Then, we compute the probability of CVD, 
given the values for the observed factors 𝑿𝑜𝑏𝑠 = 𝑿𝑓 ⧵ 𝑿𝑚𝑖𝑠𝑠. A first 
straightforward possibility is to replace the missing covariates with 
their averages over the training population. Now, as a better alterna-
tive, we can impute the missing values by means of their expected value 
according to the conditional density, as follows 

E
(

𝑿𝑚𝑖𝑠𝑠|𝑿𝑜𝑏𝑠
)

= ∫ (𝒙𝑚𝑖𝑠𝑠|𝒙𝑜𝑏𝑠)𝒙𝑚𝑖𝑠𝑠 𝑑𝒙𝑚𝑖𝑠𝑠. (17)

This quantity is estimated numerically using the average of a sample 
drawn from the conditional distribution. In the followings, when the 
method is applied in presence of missing values, we will refer to it as 
the ‘missing model’. Conversely, when no values are missing, we will 
refer to the method as the ‘complete model’.
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Table 1
Measured values of the risk factors included in this analysis for the sample population 
considered and corresponding estimated 𝛽 parameters. The units used for the different 
measurement types, the corresponding medians, modes, means, standard deviations and 
measured ranges are reported from the second to the seventh column, where applicable. 
In the last column are shown the estimated values of each covariate parameters 𝛽
appearing in the conditional CPH model of the output node (see Eq. (5)). The variables 
are ordered according to their estimated (absolute) value of 𝛽.
 Acronym Units Median Mode Mean (sd) Measured Estimated 𝛽 
 range  
 AGE years 42 42 41.6 (7) [28, 54] 0.53  
 HBA1C % 8 7.7 8.1 (1.2) [5, 13] 0.40  
 HDL mg/dL 55 50 55 (13) [28, 112] −0.37  
 SBP mmHg 119 115 118 (10) [89, 172] 0.30  
 SEX – – – – – 0.16  
 LDL mg/dL 113 107 114 (28) [28, 255] 0.14  
 SM – – – – – 0.04  

3. Real database and factors

In the following, when applying the proposed methodology to real 
data, we use the DCCT/EDIC database which is a large 30-year study 
led by the National Institute of Diabetes and Digestive and Kidney 
Diseases of the US National Institutes of Health [33]. The study consists 
of two phases: the Diabetes Control and Complications Trial (DCCT) 
which ends at year 10, when the Epidemiology of Diabetes Interven-
tions and Complications (EDIC) observational study starts. This last 
one continues for the following 20 years [43,44]. In the first DCCT 
phase, 1441 people with T1D were enrolled, of which 1375 (∼95%) 
volunteered to participate in the second EDIC phase [43–45]. In both 
phases, for each of these individuals either the time of the event (if 
it occurred) or the censoring time are recorded. Furthermore, a large 
number of risk factors are documented, including the few considered 
here.

Here, we consider the first occurrence of a CVD event among those 
in the DCCT/EDIC study. For each of the considered factors, we average 
the corresponding values during the first five years of the EDIC study 
to minimise the influence of the fluctuations. We then consider the 
longitudinal data since the beginning of year 6 of the EDIC study. 
Unfortunately, possibly due to censoring, we see a high imbalance 
between events and censoring after the year 12 of the EDIC study. 
Therefore, we limit our analysis to the 7 years following the first 5 years 
of the EDIC study. We do not consider, in the EDIC study, the small 
fraction of individuals (∼2%) with missing values for some factors and 
those that were censored before the start of our observation period. The 
final sample used here consists of 1293 subjects, of which 680 males 
(53%) and 613 females (47%) including 15% smokers. In Table  1, we 
show a summary of the factors included in the analysis. In addition, 
the empirical distributions of all the non-binary factors on the whole 
sample population are reported in Figure S3 of the Supplementary 
material.

4. Application

Here, we first describe the results obtained from the NIH real dataset 
of subjects with T1D described in the previous section. Then, we turn 
to those from a realistic simulated dataset. In both cases, we adopt the 
same BBN model described above.

4.1. Results on real data

We illustrate now some results from the real dataset about CVD in 
subjects with T1D [33] regarding both the estimation of the parameters 
and the performances of the method.
6 
4.1.1. Parameter estimates
In the left panel of Fig.  3, we show the theoretical curve for 

the population risk, based on the estimated BBN model according to 
Eq. (15), superimposed to the empirical one, computed through the 
KM estimator. In the middle panel of the same figure, some individual 
theoretical risk curves are displayed corresponding to specific values 
of the covariates. We see quite a large spread of individual curves. 
However, when averaging them, we obtain a curve very close to the 
theoretical one derived from estimated BBN model, as shown in the 
right panel of the same figure. This increases the reliability of the 
estimated population risk curve. The relative 𝛽 parameters of the linear 
combination of the covariates (see Eq. (5)) are estimated on the whole 
sample population and are reported in the last column of Table  1. The 
estimated values for the parameters of the baseline survival function 
(see Eq. (4)) result to be 137.7 for 𝛾 and 0.83 for 𝜅.

4.1.2. Performance evaluation
We now present the performance evaluation results, first for indi-

vidual risk prediction and then for the estimation of the probability of 
the output conditioned on one or two binary risk factors. In Table  2, 
we present the performance results relative to the complete model for 
both internal validation and 5-fold cross-validation. For 5-fold cross-
validation, we use 100 random replications. The values obtained do not 
change when using 200 replications. Results for the case with missing 
values of LDL and HDL are also included in the same table. These results 
show a good ability of the methodology in predicting the risk, also 
in the case of missing data. The ROC curves relative to the internal 
validation for both the complete and the missing model are shown in 
Figure S4 of the Supplementary material.

To assess the goodness of the conditional probability estimation, we 
compare the theoretical risk curve (see Eq. (16)) with the corresponding 
empirical one, computed through the KM estimator. First, we condition 
on the single binary variable SM. The results are displayed in Fig.  4. 
Despite the small amount of smokers in the sample (about 15% of the 
total), the agreement between the two curves is good, with a mean 
discrepancy (in absolute value) equal to 0.003. However, this discrep-
ancy increases significantly when conditioning on both SM and SEX, 
especially for female smokers where the mean discrepancy increases 
up to 0.01 (see Fig.  4(c)).

4.2. Results on simulated data

In order to have a realistic simulated dataset, we sample from the 
model described in the previous section corresponding to the parame-
ters estimated from the real dataset described before. Then, we perform 
parameter estimation and we compare the estimated values with those 
used to simulate data. This allows us to demonstrate empirically the 
convergence of the parameter estimators to the true values. The scheme 
of the simulation process is the following:

• drawing the covariate values according to their joint probability 
distribution in Eq. (10);

• simulation of the survival times, given the simulated covariate 
values and according to the used survival function in Eq. (4);

• censoring of the data, based on the observed rate in the real 
dataset and a uniform distribution for the censoring times.

The same performance evaluation for the real data is applied also for 
simulated data. To evaluate the effect of the sample size 𝑚 on the 
estimation of the parameters, we use five values of 𝑚 ∈ {800, 1600, 3200,
6400, 12800}. Results on both parameter estimates and performance 
evaluation are illustrated below. To account for variability in the whole 
process, for each possible size of the sample, we simulate 100 different 
datasets and repeat the whole estimation process each time.
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Fig. 3. Population and individual risk curves. On the left (right) panel, the theoretical population risk curve, in solid line, from estimated BBN model (average risk curves of the 
whole population) is shown over-imposed to the empirical one, in dashed line, computed through KM estimator. On the middle panel, some individual risk curves are shown for 
some specific values of the covariates.
Table 2
Performance results of the complete and missing models for the real data. In the second and third columns the values of the 
AUC and C-index for the internal validation are reported. In the last two columns, the mean of the values of 100 random 
replication of the 5-fold cross-validation are shown, together with their 95% quantile intervals in parenthesis.
 Indicator Internal validation 5-fold cross-validation
 Complete model Missing model Complete model Missing model  
 C-Index 0.75 0.73 0.73 (0.68–0.78) 0.71 (0.66–0.75) 
 AUC 0.76 0.74 0.74 (0.69–0.79) 0.71 (0.67–0.76) 
Fig. 4. Comparison between theoretical and empirical (KM estimator) conditional probability curves. On the top panels, we display the two probability curves obtained conditioning 
on SM alone: non smokers (a), smokers (b). In the bottom panel, we show the risk curves relative to female smokers, obtained conditioning on SM and SEX together. The 
corresponding mean absolute discrepancies between the three theoretical curves and the corresponding empirical ones are, respectively, 0.0007, 0.003 and 0.01.
4.2.1. Estimation of parameters
In Table  3, we present some results of the estimates of the 𝜷

parameters appearing in the conditional CPH model of the output node 
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(see Eq. (5)). These results are relative to 𝑚 = 1600 individuals, which 
is comparable with the real sample (∼1300), and then to 𝑚 = 12800. 
The results are good, with deviations of the mean values from the true 



O. Moro et al. Computers in Biology and Medicine 190 (2025) 109967 
Table 3
Results of parameter estimation for simulated data with varying sample size. In the 
second column are shown the true model values used to simulate data. In the third 
column, we report the mean values of the parameters estimated from 100 independent 
samples with 𝑚 = 1600 individuals. In the fourth column, the corresponding mean 
values of the difference in absolute value between true and estimated parameter values 
are shown. In the last column, we display the analogous results of the fourth column, 
for 𝑚 = 12 800.
 Parameter True value m = 1600 m = 12800 
 Mean value Mean difference Mean difference
 AGE 0.53 0.56 0.10 0.04
 HBA1C 0.40 0.41 0.08 0.03
 HDL −0.37 −0.38 0.07 0.02
 SBP 0.30 0.32 0.10 0.04
 SEX 0.16 0.17 0.09 0.03
 LDL 0.14 0.12 0.09 0.03
 SM 0.04 0.04 0.10 0.03

Fig. 5. Mean absolute difference between true (see Table  1) and estimated (see Eq. (5)) 
values for 𝛽 parameters versus sample size of simulated data. The parameters are 
estimated through maximisation of the partial likelihood function (see Eqs. (6), (7)). 
The two sets of data points correspond to the estimated values for the HDL 𝛽 parameter 
(∙) and the average values over all the seven parameters (+). The values displayed 
correspond to the averages over 100 replications. We use a log–log scale and a linear 
fit is over-imposed to the data points.

ones within 10%. Looking at the mean absolute diffference columns, 
we notice that the values decrease by a factor 2–3, when increasing 
the sample size from 1600 to 12800. The results relative to all the used 
sample sizes are reported in the Supplementary material, Table S1.

In Fig.  5, we show the decrease of the mean absolute error of 
the 𝛽 parameters, when increasing the size of the simulated sample. 
The data points in the figure, represented in log–log scale, are well 
described by a linear model with slopes corresponding to −0.52 and 
−0.53, respectively, for the HDL curve and for the one corresponding 
to all the 𝛽 parameters cumulated. This provides evidence that the error 
decreases as a power law, with the value of the exponent equal to the 
slope of the straight lines. We notice that the slopes estimated for the 
different 𝛽s are close enough to −1∕2. Indeed, the mean value of those 
slopes is −0.53. The minimum value is −0.58 for HBA1C, followed by 
−0.56 of LDL and −0.53 of SBP. Both the two binary variables and HDL 
present a slope value equal to −0.52, while the value for AGE result to 
be the highest one, equal to −0.47. The corresponding curves for all 
the other 𝛽 parameters are depicted in Figure S5 in the Supplementary 
material.

The values of the parameters 𝛾 and 𝜅 obtained from the simulated 
sample of 1600 individuals are 157.6 and 0.85, with an absolute mean 
error equal to 32.5 and 0.07, respectively. These two errors decrease 
to 10.4 and 0.03 for the 12800 simulate sample, respectively. Looking 
at the mean absolute discrepancy between the true baseline survival 
and the one obtained from the simulated data when increasing the 
value of 𝑚, it decreases as a power law with exponent equal to −0.49. 
Details of the values estimated from the simulated dataset on varying 
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the sample size are reported in Table S2 in the Supplementary material. 
In addition, in Figure S6 in the Supplementary material, we show the 
decrease of the mean absolute error of the two parameters 𝛾 and 𝜅, 
when increasing the size of the simulated sample.

4.2.2. Evaluation of performances
In Table  4, we present the values of the two performance indicators 

for the simulated data with 𝑚 = 1600 individuals. The results shown are 
relative to both the complete version of the model and to its variation 
with missing values of HDL and LDL. Also here the values obtained for 
the 5-fold cross-validation are relative to 100 random replications, with 
the same motivation for this choice as for the case of real data.

The results for the conditional probability estimation when 𝑚 =
1600 individuals are comparable to those for real data. Indeed, the 
discrepancy for female smokers decreases slightly to 0.007 from 0.01 
of the real data. This discrepancy depends on some features of the data 
and not on inadequacy of the model. In fact, increasing the simulated 
sample to 𝑚 = 50000 individuals, the agreement between the two curves 
improves importantly and the mean discrepancy decreases to 0.002. 
Alternatively, increasing percentage of smokers from 15% to 50% and 
keeping 𝑚 = 1600, the mean discrepancy decreases to 0.005.

5. Discussion

We first focus on the results relative to the real dataset. The es-
timated values of the 𝜷 parameters, reported in the last column of 
Table  1, are ordered according to their absolute value. Except for HDL, 
they are all positive, which means that an increase of the value of the 
variable corresponds to an increase of the risk. The opposite is only true 
for HDL, which is a ‘protective’ factor. We remember that, in this case, 
for values above 50 mg/dL, the risk does not vary. Instead, for values 
below the threshold, the risk increases when HDL decreases [40]. We 
can see that AGE is the most important factor followed by HBA1C. 
Interestingly, the third most important factor is HDL, with an absolute 
value very close to the one of HBA1C. Immediately after HDL, we 
find SBP, followed by SEX and then LDL. These last two factors have 
comparable values of the parameters. At the end of the list there is SM, 
with value of the parameter one order of magnitude smaller than the 
others. However, we expect a large uncertainty in the estimates of 𝛽
for this factor because of the small proportion of smokers in the sample 
population of the database analysed.

The results obtained from the real dataset, show a good ability 
of the BBN model in predicting the risk at the population level. In 
particular, looking at Fig.  3, we notice how the theoretical risk curve, 
obtained after model estimation by Eq. (15), fits well to the empirical 
one computed by KM estimator. From the same figure, we see that 
this is true also when the population risk is estimated by averaging the 
individual risk curves, although showing a slightly worse agreement.

The validation results in Table  2 show a good performance of the 
BBN model for prediction of the individual risk. The performances of 
individual risk estimation, as measured by the AUC and C-index from 
both the internal and 5-fold cross-validation, are about 0.75, for both 
real and simulated data with comparable sample sizes. As a comparison, 
when using the NORRISK2 risk calculator [13], the AUC for both 
internal and external validation is about 0.77 for men. Surprisingly, 
the AUC value obtained for women is about 0.83. The authors do not 
discuss the different values obtained for man and women. We expect 
that the higher values for the NORRISK2 when compared to the BBN 
ones, are mostly due to the large sample sizes in the former study. 
In fact, they are about one order of magnitude larger than the one 
used here. In addition, the NORRISK2 study is relative to the general 
population, while our is concerned with subjects with T1D. Finally, 
both studies consider CVD events but the specific endpoints (patho-
logical conditions) are different. Another possible comparison can be 
made with the results obtained by Longato et al. [15], where a DL 
model is built to predict risk of cardiovascular complications in people 
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Table 4
Performance results of the complete and missing models for the simulated data with 𝑚 = 1600 individuals. For both the 
internal and the 5-fold cross-validation, the evaluation is replicated 100 times. In the second and third columns the mean 
values of the AUC and C-index for the internal validation are reported. In the last two columns, the mean of the values of 
the 100 random replications of the 5-fold cross-validation for the same two indicators are displayed, together with their 95% 
quantile intervals in parenthesis.
 Indicator Internal validation 5-fold cross-validation
 Complete model Missing model Complete model Missing model  
 C-Index 0.75 (0.69–0.80) 0.71 (0.66–0.76) 0.72 (0.66–0.77) 0.69 (0.63–0.74) 
 AUC 0.75 (0.70–0.80) 0.72 (0.66–0.77) 0.73 (0.66–0.78) 0.70 (0.63–0.75) 
with T1D from 1 to 5 years. The AUC and C-index values obtained 
for the 5-year prediction are equal to 0.79 and 0.77, respectively. The 
performances are comparable with NORRISK2 and slightly better than 
the ones obtained here. However, as already mentioned in the Intro-
duction, the DL model used is trained based on a sample containing 
214676 individuals, that is much larger than the one used here (1293). 
Furthermore, the forecast time horizon used in the cited paper [15] is of 
5 years, while the performance reported for the methodology proposed 
here are for forecast at 7 years.

We notice that the results of the performances obtained for the 
case of missing values show only a moderate loss with respect to those 
obtained for the complete one (see Table  2). Quantitatively the loss is in 
practice the same for both the internal and the 5-fold cross-validation. 
Focusing on the results for the conditional probabilities of the output, 
with respect to one single variable, we see that we can well describe 
it theoretically (see Fig.  4). We notice that, when conditioning on both 
SM and SEX together, we see a loss in ability of the theoretical model 
in describing the empirical one (see Fig.  4(c)). However, the results on 
simulated data suggest that this mainly depends on a limited sample 
size, as discussed later.

We turn now to the results of the simulation study, highlighting the 
unbiasedness and consistency of parameter estimators. Looking at Table 
3, we notice that the mean estimated values for the 𝜷 parameters are 
quite close to the true ones, also in the case of a simulated sample of 
the smallest size 𝑚. This shows that the estimation process is unbiased. 
The errors of both the parameters 𝛽 and those of the baseline survival 
function decrease approximately as 𝛩(1∕

√

𝑚) (see Fig.  5). This is true 
at level of single parameters and when the estimates of the 𝜷 are 
cumulated with respect to the different factors. The highest percentage 
errors are for the 𝛽 of SM. This could be explained by the fact that the 
proportion of smokers used here is quite low (∼15%). As said before, 
this is done to have a realistic dataset.

The results of the prediction performances obtained for the sim-
ulated data (see Table  4) are quite close to those for the real ones 
(see Table  2). This true for both the internal validation and the k-fold. 
However, the k-fold results present slightly worse values with respect to 
the real ones. These last results provide a better quantification of the 
performances. Indeed, in the real dataset, we perform the estimation 
only ones. Then, we take into account only the variation of the pre-
diction ability due to different k-fold partition of the sample. Instead, 
for the simulation, we use several sets of original data and for each 
of them we perform parameter estimation. Therefore, in addition to 
the above variation we have also those induced by the data analysed. 
The performance loss when passing from complete model to the miss-
ing values case is almost the same for internal validation and 5-fold 
cross-validation.

We turn now to the results on the probability of the output (CVD), 
conditioned on a few factors. The discrepancy values between theo-
retical and empirical risk curve obtained with dimension 𝑚 = 1600
individuals, which is comparable to the sample size of the real dataset, 
are similar to those relative to this last case. This is true both when 
conditioning on SM alone and when conditioning on SEX and SM 
together. Indeed, in the latter case, this discrepancy for female smokers 
decreases to 0.007 for the simulated dataset from 0.01 for the real one. 
Moreover, through this simulation, we can interpret the higher last 
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value, when compared to those conditioning only on SM for the real 
dataset. In fact, increasing the sample size to 𝑚 = 50000, the agreement 
improves significantly, for example, from 0.007 for female smokers 
to 0.002. Similarly, keeping the sample size at 𝑚 = 1600, when the 
percentage of smokers is increased to 50%, the discrepancy decreases 
to 0.005.

From the overall results, we can see that the proposed BBN based 
method shows good ability in predicting CVD individual risks among 
the population with T1D. Furthermore, the method maintains good 
validation results also in case of missing values, with a relatively small 
loss in performance. This last allows a reliable risk estimation in a wider 
range of cases. The simulation study highlights the reliability of the 
estimation process and the ability of the method to properly retrieve 
the conditional probability of the output (CVD) given a few factors. 
Such information can be helpful when performing intervention.

The proposed methodology therefore represents a useful tool for 
individual CVD risk quantification, specifically for people with T1D. 
However, as the simulated results suggest, the method would benefit 
from the availability of a larger sample. In fact, this last improves the 
ability to correctly predict the event under study, which is expected to 
increase method performances, as measured, for example, by AUC. We 
could update the model by the planned acquisition of more data within 
the WARIFA project [39]. We notice that the parameter estimation has 
been performed on a dataset of relatively young subjects with T1D. In 
fact, age at the beginning of the observation period is ranging from 28 
to 54 years and the mean is equal to 41.6 years. Therefore, some bias 
could be introduced when applying the methodology to subjects with 
T1D outside this range.

We remark that, unlike the CPH model, which is the basis of 
existing RCs, BBN models require a considerable implementation effort. 
Furthermore, some of the tasks, e.g. estimation of population risk, 
are often computationally intensive. In order to reduce computing 
time, continuous variables have been here discretised. However, our 
discretisation performed here seems to be adequate. In fact, using a 
higher number of factor levels does not change the results in practice. 
Finally, when compared to CPH model, BBN has an additional set of 
parameters to be estimated. For the BBN applied here, these parameters 
appear in three marginal models and four conditional ones.

Our methodology has been derived and applied to quantify the 
risk for some specific adverse events (CVD) in a given population 
(individuals with T1D). This is due to the fact that this research has 
been developed within the EU Horizon 2020 WARIFA project [39], 
which deals with this case. However, the methodology can be adapted 
to many other situations. For example, in a straightforward way it 
can be used to predict risk of CVD in the general population. This 
requires to reduce the DAG by deleting nodes and arrows specific to 
T1D. In addition, a suitable database for general population is needed to 
estimate model parameters. More in general, given the good behaviour 
of this approach, it could be developed and applied to other different 
pathological conditions, e.g. melanoma occurrence. Indeed, we have 
recently started to work on this pathology.

We notice that, despite the name of the method, the model devel-
oped here is not Bayesian. In fact, we do not use any a priori model 
for the model parameters. The historical reasons for this name can be 
found for example in Pearl [37,46]. However, a natural extension of 
this work includes the adoption of a real Bayesian approach. In this 
case, one possibility would be to use a multivariate non-informative 
prior (i.e. Dirichlet distribution) for the parameter vector.
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6. Conclusions

The proposed BBN based methodology reveals a good ability in 
quantifying individual risk of CVD events in people with T1D. The 
performances remain good also when the values of some factors are 
missing. Empirical evidence of the estimator consistency has been pro-
vided through a simulation study. Results from both real and simulated 
data show that the method properly retrieves the conditional proba-
bility of the output (CVD) given a few factors. Such information can 
be helpful when performing intervention. The proposed methodology 
therefore represents a useful tool for computing the risk of CVD events 
in individuals with T1D. However, it can be extended with minor modi-
fications to the general population, provided that a suitable database is 
available to perform parameter estimation. More in general, given the 
good behaviour of this approach, it could be developed and applied 
to other different pathological conditions, e.g. melanoma occurrence. 
Indeed, we have recently started to work on this pathology.

Acronyms not defined in the text

 PA Physical Activity  
 DRK Drinking habits  
 TRT Treatments  
 TRG Triglyceride  
 BMI Body-mass index  
 DBP Diastolic blood pressure 
 FMH Family History of CVD  
 DIA DUR Diabetes duration  
 EDULV Educational level  
 ETN Ethnicity
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