Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/139843
Campo DC Valoridioma
dc.contributor.authorMoro, Ornellaen_US
dc.contributor.authorGram, Inger Torhilden_US
dc.contributor.authorLøchen, Maja Lisaen_US
dc.contributor.authorVeierød, Marit B.en_US
dc.contributor.authorWägner, Anna Maria Claudiaen_US
dc.contributor.authorSebastiani, Giovannien_US
dc.date.accessioned2025-06-10T14:41:50Z-
dc.date.available2025-06-10T14:41:50Z-
dc.date.issued2025en_US
dc.identifier.issn0010-4825en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139843-
dc.description.abstractObjectives: Cardiovascular diseases (CVDs) represent a major risk for people with type 1 diabetes (T1D). Our aim here is to develop a new methodology that overcomes some of the problems and limitations of existing risk calculators. First, they are rarely tailored to people with T1D and, in general, they do not deal with missing values for any risk factor. Moreover, they do not take into account information on risk factors dependencies, which is often available from medical experts. Method: This study introduces a Bayesian Belief Network (BBN) model to quantify CVD risk in individuals with T1D. The developed methodology is applied to a large T1D dataset and its performances are assessed. A simulation study is also carried out to quantify the parameter estimation properties. Results: The performances of individual risk estimation, as measured by the area under the ROC curve and by the C-index, are about 0.75 for both real and simulated data with comparable sample sizes. Conclusions: We observe a good predictive ability of the proposed methodology with accurate parameter estimation. The BBN approach takes into account causal relationships between variables, providing a comprehensive description of the system. This makes it possible to derive useful tools for optimising intervention.en_US
dc.languageengen_US
dc.relation.ispartofComputers in biology and medicineen_US
dc.sourceComputers in Biology and Medicine[ISSN 0010-4825],v. 190, (Mayo 2025)en_US
dc.subject32 Ciencias médicasen_US
dc.subject320501 Cardiologíaen_US
dc.subject.otherBayesian Belief Networken_US
dc.subject.otherCardiovascular Diseasesen_US
dc.subject.otherCox Proportional Hazard Modelen_US
dc.subject.otherRisk Assessmenten_US
dc.subject.otherSimulation Studyen_US
dc.subject.otherStatistical Inferenceen_US
dc.subject.otherType 1 Diabetesen_US
dc.titleA Bayesian Belief Network model for the estimation of risk of cardiovascular events in subjects with type 1 diabetesen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.compbiomed.2025.109967en_US
dc.identifier.scopus105000264810-
dc.contributor.orcid0000-0002-3607-1797-
dc.contributor.orcid0000-0002-0031-4152-
dc.contributor.orcid0000-0002-8532-6573-
dc.contributor.orcid0000-0002-2083-2758-
dc.contributor.orcid0000-0002-7663-9308-
dc.contributor.orcid0000-0003-0819-8149-
dc.contributor.authorscopusid59699000000-
dc.contributor.authorscopusid7003568960-
dc.contributor.authorscopusid7003604996-
dc.contributor.authorscopusid35417291900-
dc.contributor.authorscopusid7401456520-
dc.contributor.authorscopusid55726922900-
dc.identifier.eissn1879-0534-
dc.relation.volume190en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateMayo 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr1,481
dc.description.jcr7,0
dc.description.sjrqQ1
dc.description.jcrqQ1
dc.description.scieSCIE
dc.description.miaricds11,0
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.orcid0000-0002-7663-9308-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameWägner, Anna Maria Claudia-
Colección:Artículos
Adobe PDF (1,85 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.