Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/139761
Campo DC Valoridioma
dc.contributor.authorLara-Abelenda, Francisco J.en_US
dc.contributor.authorChushig-Muzo, Daviden_US
dc.contributor.authorPeiro-Corbacho, Pabloen_US
dc.contributor.authorGomez-Martinez, Vanesaen_US
dc.contributor.authorWägner, Anna Maria Claudiaen_US
dc.contributor.authorGranja, Conceicaoen_US
dc.contributor.authorSoguero-Ruiz, Cristinaen_US
dc.date.accessioned2025-06-09T15:44:34Z-
dc.date.available2025-06-09T15:44:34Z-
dc.date.issued2025en_US
dc.identifier.issn1532-0464en_US
dc.identifier.otherWoS-
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139761-
dc.description.abstractObjective: Machine learning (ML) models have been extensively used for tabular data classification but recent works have been developed to transform tabular data into images, aiming to leverage the predictive performance of convolutional neural networks (CNNs). However, most of these approaches fail to convert data with a low number of samples and mixed-type features. This study aims: to evaluate the performance of the tabular-to-image method named low mixed-image generator for tabular data (LM-IGTD); and to assess the effectiveness of transfer learning and fine-tuning for improving predictions on tabular data. Methods: We employed two public tabular datasets with patients diagnosed with cardiovascular diseases (CVDs): Framingham and Steno. First, both datasets were transformed into images using LM-IGTD. Then, Framingham, which contains a larger set of samples than Steno, is used to train CNN-based models. Finally, we performed transfer learning and fine-tuning using the pre-trained CNN on the Steno dataset to predict CVD risk. Results: The CNN-based model with transfer learning achieved the highest AUCORC in Steno (0.855), outperforming ML models such as decision trees, K-nearest neighbors, least absolute shrinkage and selection operator (LASSO) support vector machine and TabPFN. This approach improved accuracy by 2% over the best-performing traditional model, TabPFN. Conclusion: To the best of our knowledge, this is the first study that evaluates the effectiveness of applying transfer learning and fine-tuning to tabular data using tabular-to-image approaches. Through the use of CNNs' predictive capabilities, our work also advances the diagnosis of CVD by providing a framework for early clinical intervention and decision-making support.en_US
dc.languageengen_US
dc.relation.ispartofJournal of Biomedical Informaticsen_US
dc.sourceJournal Of Biomedical Informatics[ISSN 1532-0464],v. 165, (Mayo 2025)en_US
dc.subject32 Ciencias médicasen_US
dc.subject320501 Cardiologíaen_US
dc.subject.otherConvolutional Neural-Networksen_US
dc.subject.otherRisk-Factorsen_US
dc.subject.otherFollow-Upen_US
dc.subject.otherGlucoseen_US
dc.subject.otherTabular-To-Image Methodsen_US
dc.subject.otherTransfer Learningen_US
dc.subject.otherLow-Dimensional Dataen_US
dc.subject.otherMixed-Type Dataen_US
dc.subject.otherCardiovascular Disease Predictionen_US
dc.titleTransfer learning for a tabular-to-image approach: A case study for cardiovascular disease predictionen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jbi.2025.104821en_US
dc.identifier.scopus105002031197-
dc.identifier.isi001482050800001-
dc.contributor.orcid0000-0001-5565-8203-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0009-0000-0023-8973-
dc.contributor.orcid0009-0001-3349-3900-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.authorscopusid58896003400-
dc.contributor.authorscopusid57218569405-
dc.contributor.authorscopusid59214986500-
dc.contributor.authorscopusid58804527000-
dc.contributor.authorscopusid7401456520-
dc.contributor.authorscopusid36086375600-
dc.contributor.authorscopusid55207356700-
dc.identifier.eissn1532-0480-
dc.relation.volume165en_US
dc.investigacionCiencias de la Saluden_US
dc.type2Artículoen_US
dc.contributor.daisngid56018541-
dc.contributor.daisngid2050061-
dc.contributor.daisngid59795114-
dc.contributor.daisngid59273665-
dc.contributor.daisngid50126413-
dc.contributor.daisngid15680807-
dc.contributor.daisngid3658643-
dc.description.numberofpages9en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Lara-Abelenda, FJ-
dc.contributor.wosstandardWOS:Chushig-Muzo, D-
dc.contributor.wosstandardWOS:Peiro-Corbacho, P-
dc.contributor.wosstandardWOS:Gómez-Martínez, V-
dc.contributor.wosstandardWOS:Wägner, AM-
dc.contributor.wosstandardWOS:Granja, C-
dc.contributor.wosstandardWOS:Soguero-Ruiz, C-
dc.date.coverdateMayo 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-MEDen_US
dc.description.sjr1,16
dc.description.jcr4,0
dc.description.sjrqQ1
dc.description.jcrqQ2
dc.description.scieSCIE
dc.description.miaricds10,8
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUIBS: Diabetes y endocrinología aplicada-
crisitem.author.deptIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.deptDepartamento de Ciencias Médicas y Quirúrgicas-
crisitem.author.orcid0000-0002-7663-9308-
crisitem.author.parentorgIU de Investigaciones Biomédicas y Sanitarias-
crisitem.author.fullNameWägner, Anna Maria Claudia-
Colección:Artículos
Adobe PDF (1,93 MB)
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.