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 A B S T R A C T

Objective: Machine learning (ML) models have been extensively used for tabular data classification but 
recent works have been developed to transform tabular data into images, aiming to leverage the predictive 
performance of convolutional neural networks (CNNs). However, most of these approaches fail to convert data 
with a low number of samples and mixed-type features. This study aims: to evaluate the performance of the 
tabular-to-image method named low mixed-image generator for tabular data (LM-IGTD); and to assess the 
effectiveness of transfer learning and fine-tuning for improving predictions on tabular data.
Methods: We employed two public tabular datasets with patients diagnosed with cardiovascular diseases 
(CVDs): Framingham and Steno. First, both datasets were transformed into images using LM-IGTD. Then, 
Framingham, which contains a larger set of samples than Steno, is used to train CNN-based models. Finally, 
we performed transfer learning and fine-tuning using the pre-trained CNN on the Steno dataset to predict CVD 
risk.
Results: The CNN-based model with transfer learning achieved the highest AUCORC in Steno (0.855), 
outperforming ML models such as decision trees, K-nearest neighbors, least absolute shrinkage and selection 
operator (LASSO) support vector machine and TabPFN. This approach improved accuracy by 2% over the 
best-performing traditional model, TabPFN.
Conclusion: To the best of our knowledge, this is the first study that evaluates the effectiveness of applying 
transfer learning and fine-tuning to tabular data using tabular-to-image approaches. Through the use of CNNs’ 
predictive capabilities, our work also advances the diagnosis of CVD by providing a framework for early clinical 
intervention and decision-making support.
1. Introduction

Cardiovascular diseases (CVDs) are noncommunicable diseases
(NCDs) that remain the leading cause of morbidity and mortality [1], 
imposing significant health and economic burden globally [2]. CVDs 
are among the most prevalent NCDs, affecting more than 500 million 
people worldwide [3]. Clinical studies indicate that CVD is highly 
prevalent in patients with type 1 diabetes (T1D), increasing the mortal-
ity rates [4–6]. Although T1D is frequently diagnosed in children and 
youth, many cases have been reported in adults [7]. Owing to multiple 
hospitalizations, adverse events, and frequent visits to primary and 
specialized care, patients diagnosed with NCDs significantly increase 
the cost and demand for healthcare services. Early identification of CVD 
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cases, in cohorts diagnosed with other NCDs such as T1D, along with 
timely and effective interventions are crucial for reducing both health 
and economic burdens.

To address this global health challenge, several risk calculators have 
been developed to identify individuals at high risk of developing CVD, 
encouraging timely interventions and reducing the likelihood of acute 
events. Among the most popular calculators, we find the Framingham 
risk score [8], and the PROCAM calculator [9]. For individuals diag-
nosed with diabetes, more specialized CVD risk calculators have been 
created and internationally validated, including the Swedish T1D risk 
score [10], the Scottish T1D risk score [11] and the Danish Steno T1 
Risk Engine (ST1RE) [12]. Despite their extensive usage, these CVD risk 
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calculators have been developed based on a set of rules defined by clin-
ical experts and derived from specific cohorts, raising questions related 
to their scalability and applicability to different clinical scenarios.

Recent advancements in Machine Learning (ML) offer a promising 
opportunity to develop more generalizable and scalable models for 
CVD risk prediction [13–16]. Over the last decade, Deep Learning, 
a sub-field of ML, has made important breakthroughs across various 
domains, including speech recognition, natural language processing, 
and computer vision [17,18]. In particular, the Convolutional Neural 
Network (CNN)-based models have demonstrated exceptional results 
in multiple computer vision tasks [19–21]. Regarding CVD prediction, 
CNN-based models have achieved excellent results when applied to 
high-quality cardiac images obtained from MRI and CT scans [22]. 
However, the use of these imaging modalities is not preferred for pre-
dictions due to their prolonged acquisition times, limited availability, 
and associated radiation exposure. Additionally, the direct application 
of CNN-based models to tabular data, consisting of samples (rows) 
and features (columns), is still challenging due to the lack of inherent 
locality and spatial relationships that are crucial to effectively train 
CNNs [23,24]. CNNs’ performance on tabular data is also limited by 
numerous challenges such as missing data, dependency on preprocess-
ing, missing spatial dependencies, and the absence of prior knowledge 
about the data structure [18].

To mitigate these limitations, several approaches have been devel-
oped to transform tabular data into 2D images, allowing CNN-based 
models to be subsequently applied to them [25–28]. Among the most 
popular, we find DAFT [25], which integrates tabular data with 3D 
images within CNNs, DeepInsight [26], which converts non-image data 
into images for CNN architecture, REFINED [27], which represents 
features as images with neighborhood dependencies to be compati-
ble with CNNs. Additionally, IGTD [28], addresses the conversion of 
tabular data into images but shows limitations with low-dimensional 
datasets. To overcome these challenges, DWTM [29] proposes a dy-
namic weighted tabular method for CNNs, while HACNet [30] proposes 
an interpretable end-to-end table-to-image converter for CNNs.

Although these approaches [25–30] are promising to address the 
challenges of applying CNN-based models on tabular data, they have 
been evaluated in scenarios with high-dimensional data. To our knowl-
edge, no research has studied the transformation of tabular data with 
mixed-type features or datasets with few features (low-dimensionality)
[31]. IGTD [28] is one of the most adaptive methods to transform 
tabular data into images, however, it does not perform well with low-
dimensional and mixed-type datasets. To address these limitations, the 
authors developed the LM-IGTD [31], a modified version of IGTD that 
uses a novel technique for creating stochastic noisy features. Trans-
forming tabular data into images facilitates the application of transfer 
learning, which is especially beneficial when data is limited or when 
training models from scratch is impractical. It leverages pre-trained 
models to enhance performance with smaller datasets, although most 
studies that have explored the use of transfer learning in tabular data 
have focused on embedding approaches [32]

In this study, the aim is two-fold. First, we aim to transform tabular 
data from patients diagnosed with CVDs into 2D images using the LM-
IGTD method [31], addressing the inherent challenges associated with 
low-dimensional and mixed-type data (categorical and continuous fea-
tures). Second, we seek to evaluate the effectiveness of transfer learning 
and fine-tuning for enhancing CVD prediction, using 2D images gen-
erated by LM-IGTD. To achieve this, we used two publicly available 
datasets, which are extensively used in the CVD risk assessment: the 
Framingham dataset [33] (hereafter referred to as Fram-data) and the 
Steno dataset [12] (shortened Steno-data). Fram-data was used as the 
large dataset to obtain the initial weights for the convolutional layers, 
which were then fine-tuned using the Steno-data. We compared the 
results of LM-IGTD and CNNs against traditional ML-based models ex-
tensively used for tabular data, including the Least Absolute Shrinkage 
and Selection Operator (LASSO), K-Nearest Neighbor (KNN), Support 
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Table 1
Statement of significance.
 Problem  
 Medical datasets often have a limited number of samples and features, which  
 can lead to a reduced performance of machine learning (ML) models.  
 What is Already Known  
 ML models have been extensively used to predict medical hazards.  
 Recent advancements focus on transforming tabular data into images to leverage 
 convolutional neural networks’ predictive capabilities. However, most methods  
 struggle to handle datasets with few features and mixed data types.  
 What This Paper Adds  
 We present a transfer learning approach with fine-tuning using the  
 tabular-to-image method LM-IGTD. This methodology enhances ML  
 efficacy on small datasets with limited features, demonstrating its applicability  
 in cardiovascular disease prediction.  

Vector Machine (SVM), and Decision Tree (DT) [34,35]. Additionally, 
we evaluated TabPFN, a recently developed model that leverages foun-
dational models for classification in small tabular datasets [36]. Lastly, 
we evaluated the importance of each feature for CVD prediction by 
using Gradient-weighted Class Activation Mapping (Grad-CAM) on the 
LM-IGTD generated images. To the best of our knowledge, this is one 
of the first studies that evaluate the applicability of transfer learning 
and fine-tuning on tabular data associated with CVDs using a tabular-
to-image transformation approach over datasets with a low number of 
features, while also incorporating interpretability.

This paper is organized as follows. A description of the public 
datasets used for CVD prediction and the methods employed, includ-
ing the LM-IGTD method, are presented in Section 2. In Section 3, 
we detail the experimental setup and the results of the comparative 
analysis, where we assess the performance of CNN-based models, using 
LM-IGTD, against traditional ML-based models for CVD prediction. In 
Section 4, we discuss the implications of our findings, highlighting the 
advantages and limitations of using tabular-to-image transformation 
combined with transfer learning and fine-tuning techniques. Finally, 
Section 5 concludes the paper by summarizing our contributions and 
suggesting potential directions for future research, particularly in the 
application of tabular-to-image methods to other medical domains. A 
summary of the significance of this research and value added to the 
existing literature is presented in Table  1.

2. Materials and methods

This section provides a description of the public datasets used 
in this study, including the preprocessing steps applied to prepare 
the data for analysis. Following this, we present the notation used 
throughout the study and explain the tabular-to-image transformation 
method LM-IGTD. Finally, we introduce the foundational concepts of 
the CNNs, as well as the transfer learning techniques used. The source 
code implementing the methodology to ensure the reproducibility of 
the results presented in this paper is available at the following link: 
github.com/ai4healthurjc/tab2img.

2.1. Dataset description and preprocessing

For the development of this study, we used data from CVD patients 
from two public datasets: Fram-data and Steno-data. The Fram-data, 
collected from the Framingham Heart Study [1], contains a total of 4240 
participants and 15 features relevant to CVD prediction. These features 
are: age (in years), sex (0: male, 1: female), level of education (1 to 
4), smoking status (0: no, 1: yes), number of cigarettes smoked per 
day, total cholesterol level, systolic blood pressure (in mmHg), diastolic 
blood pressure (in mmHg), body mass index (in Kg/m2), heart rate, 
glucose level (mg/dL), use of blood pressure medications (0: no, 1: yes), 
presence of hypertension (0: no, 1: yes), history of stroke (0: no, 1: yes) 
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Table 2
A summary of statistics for continuous and categorical features associated with the Fram-data and Steno-data.
 Feature Fram-data Steno-data

 mean±std minimum maximum mean±std minimum maximum  
 Age 49.58 ± 8.57 32.00 70 50.07 ± 13.67 10.00 95.00  
 Systolic BP 132.35 ± 22.03 83.50 295 124.9 ± 18.13 68.67 186.58  
 Glucose 81.96 ± 22.83 40.00 394 185.66 ± 41.10 53.87 321.64  
 Categories Count Percentage Categories Count Percentage 
 Sex Male 1819 42.92% Male 302 44.00%  
 Female 2419 57.08% Female 375 56.00%  
 Smoker Smoker 2094 49.40% Smoker 467 69.00%  
 Non-smoker 2144 50.60% Non-smoker 210 31.00%  
or presence of diabetes (0: no, 1: yes). The dataset also includes a binary 
classification label, with ‘1’ and ‘0’ indicating whether the patient has a 
10-year risk of developing CVD. Of the 4240 participants in the dataset, 
3594 were labeled as ‘0’ (‘not-CVD’), while 644 were labeled as ‘1’ 
(‘CVD’).

The Steno-data, collected from the Steno Diabetes Center Copen-
hagen, is composed of data from 1000 Danish adults diagnosed with 
T1D, including 10 clinical and lifestyle features [12]. These features 
include: age (in years), sex (male or female), diabetes duration (in 
years), systolic blood pressure (in mmHg), low-density lipoprotein 
(LDL) (in mmol/l), glycosylated hemoglobin (HbA1c) (in mmol/mol), 
albuminuria [categorized as normoalbuminuria (<30 mg/g), microal-
buminuria (between 30 and 299 mg/g), and macroalbuminuria (≥ 300 
mg/g)], estimated glomerular filtration rate (eGFR) (in ml/min/1.72
m2), smoking status (0: non-smoker, 1:smoker), and regular physical 
activity (0:no, 1:yes). The majority of the features in Steno-data are 
continuous, with an exception for the binary features sex, smoking, 
physical activity; and albuminuria which presents three categories. All 
features are free of outliers or missing data. For both the Fram-data 
and Steno-data datasets, we applied and compared two normalization 
techniques: (1) the z-normalization that subtracts the mean and divides 
by the standard deviation; (2) the min–max normalization that rescales 
features to the [0, 1] range. It is worth noting that patients with a history 
of CVD events were excluded from our analysis, resulting in a final 
dataset of 677 individuals.

In this study, Steno-data was used to evaluate the efficacy of 
transfer-learning and fine-tuning techniques in tabular-to-image trans-
formation methods to predict the CVD risk. The selection of Steno-data 
is due to the low number of samples compared to Fram-data which 
can reduce the performance of training a neural network from scratch. 
It is worth noting that the ST1RE model provides a continuous CVD 
risk score in the [0...1] range, whereas Fram-data categorizes the CVD 
risk as binary. Consequently, a process of binarization of the label 
was required to align the risk labels for consistency in analysis. This 
binarization was conducted in two steps. First, we categorized the 
10-year CVD risk scores provided by ST1RE into three levels: low, 
intermediate, and high. These levels were identified using the risk 
stratification guidelines from the National Institute for Health and Care 
Excellence [37], with the following cut-off thresholds: CVD risk <0.1 
(low-risk patients); ≤ CVD risk < 0.2 (moderate-risk patients); and CVD 
risk≥0.2 (high-risk patients). Second, the patients categorized as low-
risk (443 participants) were assigned a binary label of ‘0’ (indicating 
‘not-CVD’), whereas both moderate-risk and high-risk patients (234 
participants) were assigned a binary of ‘1’ (indicating ‘CVD’).

To perform transfer learning from Steno-data using the weights 
of the convolutional layers derived from a model trained with Fram-
data, in our approach, it was required that the two datasets shared 
common features. Hence, we identified the common features between 
both datasets, which included sex, age, systolic blood pressure, smoking 
status and glucose levels. Note that glucose was recorded differently 
in both datasets: the Fram-data presents glucose as blood glucose 
levels (mg/dL), while the Steno-data provides it as HbA1c levels. To 
standardize this feature across datasets, we converted the HbA1c from 
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the Steno-data into equivalent glucose levels (mg/dL) through the 
formula [38]:
𝐴𝐺𝐿 = 28.7 ∗ (𝐻𝑏𝐴1𝑐∕10.929 + 2.15) − 46.7

Table  2 summarizes the statistics for Fram-data and Steno-data, 
including the mean, standard deviation (std), minimum and maximum, 
for continuous features, whereas for categorical features, the number 
of samples and percentage of each category are shown.

2.2. Notation

Let a dataset  = {𝐱(𝑖), 𝐲(𝑖)}𝑛𝑖=1 consisting of 𝑛 samples, where 
𝐱(𝑖) ∈ R𝐷𝑓  is a vector representation composed of 𝐷𝑓  features, and 
𝐲(𝑖) is the corresponding label vector (with class 0 denoting ‘not-CVD’, 
and class 1 denoting ‘CVD’). The LM-IGTD method is implemented in 
two stages: (1) increasing the dimensionality of the samples using a 
stochastic noise generation, transitioning to an augmented feature vec-
tor, i.e., from {𝐱(𝑖)}𝑛𝑖=1 to {𝐳(𝑖)}𝑛𝑖=1, where 𝐳(𝑖) ∈ R𝐷′

𝑓 , and 𝐷′ represents 
the total number of features after noise generation, with 𝐷′

𝑓 > 𝐷𝑓 . 
The new feature dimension 𝐷′

𝑓  can be determined by two methods: 
Homogeneous Noise Generation (HoNG), where 𝐷′

𝑓 = 𝑘 × 𝐷𝑓 + 𝐷𝑓
with 𝑘 representing the number of noisy features generated per original 
feature; and Heterogeneous Noise Generation (HeNG), where 𝐷′

𝑓 =
𝑓 (𝑘 × 𝐷𝑓 ) + 𝐷𝑓 , and 𝑓 is a feature selection function applied to 
the generated noisy features; (2) transforming the augmented vectors 
{𝐳(𝑖)}𝑛𝑖=1 into 2D grayscale 𝐐(𝑖) ∈ R𝑤×ℎ, where 𝑤 and ℎ represent the 
width and height of the image, respectively, and are derived from the 
augmented feature dataset as 𝑤 × ℎ = 𝐷′

𝑓 .
The dataset  was divided into a training subset 𝑡𝑟𝑎𝑖𝑛 =

{𝐱(𝑗), 𝐲(𝑗)}𝑛𝑡𝑟𝑎𝑖𝑛𝑗=1  and test subset 𝑡𝑒𝑠𝑡 = {𝐱(𝑘), 𝐲(𝑘)}𝑛𝑡𝑒𝑠𝑡𝑘=1 , comprising 80% 
and 20% of the samples, respectively. The 𝑡𝑟𝑎𝑖𝑛 was used for training 
the ML-based models, while 𝑡𝑒𝑠𝑡 was reserved for assessing model 
performance. Lastly, prior to training and given the class imbalance 
problem present in the datasets, random under-sampling was used to 
ensure the same number of samples in both classes (‘CVD’ and ‘not-
CVD’) only in train. Regarding the Steno-data, train was composed 
of 187 samples labeled as 0 and 187 samples labeled as 1, while test
was composed of 89 samples labeled as 0 and 47 samples labeled as 
1. On the other hand, for the Fram-data, train was composed of 515 
samples labeled as 0 and 515 samples labeled as 1, while test was 
composed of 719 samples labeled as 0 and 129 samples labeled as 1. 
After the pre-processing, different ML-based models were trained using 
the balanced 𝑡𝑟𝑎𝑖𝑛 composed either of vectors {𝐱(𝑖)}𝑛𝑡𝑟𝑎𝑖𝑛𝑖=1  or 2D images 
{𝐐(𝑖)}𝑛𝑡𝑟𝑎𝑖𝑛𝑖=1  to predict the estimated binary label 𝐲̂(𝑖) (identifying CVD 
risk). After training, the performance of the models was evaluated using 
𝑡𝑒𝑠𝑡. Finally, to assess the generalization capability of the predictive 
models, we repeat the pre-processing and training pipeline four times 
using different seeds for train/test splitting and the random under-
sampling technique. This process generates four distinct performance 
values for each ML-based model because the training and testing sets 
are different in each one of the iterations.

To quantitatively evaluate the predictive performance of the mod-
els, we used the figures of merit area under the receiver operating 
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characteristic curve (AUCROC), sensitivity, and specificity [35], which 
were calculated based on the model’s ability to correctly predict the 
positive and negative classes, using the following categories: true posi-
tives (TP), true negatives (TN), false positives (FP), and false negatives 
(FN). 

AUCROC = ∫

1

0
TPR(FPR) 𝑑(FPR) (1)

Sensitivity = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(2)

Specificity = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(3)

2.3. Tabular-to-image approaches for low-dimensional and mixed-type data

In the literature, several methods have been proposed for trans-
forming tabular data into images [25–27,30], being IGTD one of the 
most adaptive for handling low-dimensional and mixed-type data. IGTD 
transforms tabular data into grayscale 2D images by assigning a pixel 
to each input feature, where the pixel intensity indicates the value of 
the feature [28]. IGTD determines the spatial arrangement of pixels by 
calculating the relationships among features and assigning pixels with 
similar relationships close to each other within the image. To achieve 
this, it computes two ranking matrices: (1) the feature ranking matrix
that measures the similarity among features, and (2) the pixel ranking 
matrix that computes the similarity among samples. The algorithm 
optimizes the placement of features in the image by minimizing the 
differences between these two matrices. The IGTD’s algorithm is a 
greedy iterative process that swaps pixel assignments to reduce the 
distance between similar features. At each iteration, the algorithm 
determines the feature that has not been selected for swapping and 
identifies another feature to replace it, aiming to minimize the dissim-
ilarity between the feature ranking matrix and the pixel ranking matrix. 
The aim is to ensure that similar features are placed close to each other 
and dissimilar features are placed further apart in the resulting image.

LM-IGTD, an extension of IGTD [28] and proposed by the authors 
in [31], is a data-driven approach that allows us to transform tabular 
data into images when considering low-dimensional and mixed-type 
datasets. To address the limitations of existing tabular-to-image meth-
ods, LM-IGTD uses two main approaches: (1) the addition of noisy 
features using stochastic noise generation; and (2) the use of Gower 
distance [39] and a dynamic selection of correlations for continuous 
and categorical features. The inclusion of noisy features to input data 
seeks to extend the dimensionality of tabular data to create images 
with a reasonable number of pixels to leverage the potential of CNN-
based models. The main hypothesis of the author’s study [31] was that 
noisy features can help to create new synthetic pixels in the generated 
2D image, thus helping capture intrinsic relationships among original 
features and improving the spatial relationship of the image. Noise 
generation is characterized by three parameters: the type of noise, the 
noise power and the number of noisy features to be created.

For continuous features, Gaussian noise was applied, while for cat-
egorical features swapping noise was used. To generate noisy features, 
we followed two approaches: HoNG and HeNG. HoNG generates 𝑘 noisy 
features for each original feature by adding Gaussian noise to numerical 
features and swapping noise to categorical features. Note that various 
values of 𝑘 were explored, and through experimentation, 𝑘 = 3 was 
selected as the optimal value. HeNG follows a similar methodology but 
additionally selects a subset of 𝐷′

𝑓  generated in HoNG to improve the 
predictive performance [31].

After augmenting the dimensionality with noisy features, both the
feature ranking matrix and the pixel ranking matrix were computed. To 
obtain the feature ranking matrix, the point-biserial [40], the phik [41] 
and the Pearson correlation [42] were considered, whereas the Gower 
distance was used for the pixel ranking matrix. Note that the arrange-
ment of the pixels in the image is determined through an optimization 
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process that leverages both the correlation and distance matrices to 
minimize dissimilarities, ensuring that similar features are placed close 
together in the resulting image. Notably, the same number of noisy 
features must be created in both the Fram-data and Steno-data datasets 
to perform transfer learning. To this end, Fram-data was used as the 
reference dataset, and the same noise power and number of features 
applied to the Fram-data were also used for Steno-data.

2.4. Convolutional neural networks and transfer learning

CNNs have gained great popularity in different domains due to 
their ability to effectively extract spatial information through convo-
lution operations, leading to excellent results in image-related applica-
tions [20]. While several CNN-based models have been proposed in the 
literature, the fundamental structure of CNNs is typically composed of 
three types of layers: convolutional, pooling, and fully-connected layers. 
Despite their extensive usage, training CNNs from scratch presents 
significant challenges, particularly the need for large datasets to obtain 
high predictive results. To address this challenge, transfer learning has 
emerged as an effective approach. In this method, pre-trained CNN-
based models are used, and their weights are fine-tuned to adapt to a 
new task, thus enhancing predictive results [43]. The transfer learning 
technique seeks to train CNN-based models using large datasets and 
subsequently leverage the pre-trained models by using learned weights, 
mainly those associated with the convolutional and pooling layers, to 
adapt to a new task.

Transfer learning begins with two datasets: a large dataset and a 
smaller dataset. A model that consists of multiple layers is initially 
trained using a large dataset. After this training, the layers of the 
model are ‘frozen’, meaning their parameters are fixed and will not 
be updated in subsequent training. New layers are then added to the 
model, resulting in a new architecture that combines the original layers 
with the newly added ones. The new model, with both original and 
added layers, is then trained on the smaller dataset. However, only 
the newly added layers are adjusted during this training, while the 
original layers remain unchanged. This method enables the model to 
retain the general knowledge from the large dataset while fine-tuning 
it for specific tasks using the smaller dataset.

The CNN architecture used in this project consists of two convolu-
tional layers and two fully connected layers. Each convolutional layer is 
followed by a batch normalization layer, a rectified linear unit (ReLU) 
activation function, and a max-pooling layer. The first fully connected 
layer is followed by a ReLU activation function, a batch normalization 
layer, and a dropout layer. Finally, the second fully connected layer is 
followed by a sigmoid activation function to obtain a binary output. 
For training CNNs, we implemented an adaptive learning rate (which 
reduces the learning rate on the plateau) and early stopping, and the 
binary cross entropy was used as the cost function. In the fine-tuning 
approach, we trained a CNN with two convolutional layers and two 
fully connected dense layers using the Fram-data images. Then, we 
froze the two convolutional layers and trained the two dense layers 
with the Steno-data images.

2.5. Interpretability for models based on convolutional neural networks 
using class activation maps

Neural-based models have brought a revolution in both academia 
and industry due to their remarkable predictive performance. However, 
the adoption of these models in different domains remains limited due 
to the lack of interpretability [44]. To build models that have the ability 
to explain why they predict what they predict is crucial. Among the 
most extended interpretability methods for CNN-based models, we find 
layer-wise relevance propagation, and class activation maps (CAMs), to 
be one of the most used techniques owing to its adaptability and post-
hoc approach. CAMs indicate which regions of an image are crucial for 
the network’s predictions.
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Fig. 1. Workflow of the data-driven approach for transfer learning on tabular data using information of patients with CVDs.
By extending CAMs, Grad-CAM was proposed aiming to be applied 
to any CNN-based architecture. It calculates a coarse-grained attribu-
tion map (with respect to a certain class) on the last convolutional 
layer and then multiplies it by the attribution map obtained from 
guided back-propagation [45]. It leverages gradient information and 
the property of CNNs where the spatial relationship in the data is 
maintained after it passes through the convolutional layers.

Grad-CAM generates saliency maps by computing the gradients of a 
target class score 𝑦𝑐 with respect to the feature maps of convolutional 
layers. Given an input image 𝐼 , a CNN-based model processes it through 
multiple convolutional layers, producing a set of feature maps 𝐴𝑘.

𝐴𝑘 = 𝑓𝑘(𝐼) for 𝑘 = 1, 2,… , 𝐾

where 𝐾 is the number of feature maps in the selected convolutional 
layer. To determine the importance of each feature map 𝐴𝑘 for a target 
class 𝑐, the gradients of the class score 𝑦𝑐 are computed with respect to 
𝐴𝑘. These gradients indicate how much the class score changes with 
respect to the feature map activation, providing insight into which 
regions contributed the most to the prediction. The gradients are global 
averages pooled over the spatial dimensions (height 𝑖 and width 𝑗) of 
the feature maps to obtain the importance weights 𝑤𝑐

𝑘:

𝑤𝑐
𝑘 = 1

𝑍
∑

𝑖

∑

𝑗

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

where 𝑍 is the total number of pixels in the feature map. These 
weights quantify the importance of each feature map for predicting the 
class 𝑐. The Grad-CAM heatmap is computed as a weighted sum of the 
feature maps as follows:

𝐿𝑐
Grad-CAM = ReLU

(

∑

𝑘
𝑤𝑐

𝑘𝐴𝑘

)
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𝐿𝑐
Grad-CAM is called class-discriminative localization map. Note that 

the ReLU function ensures that only positive contributions are visual-
ized.

3. Experimental results

In this section, we present the experimental setup, some examples 
of images generated with LM-IGTD, and lastly the comparative analysis 
of predictive results obtained using: (1) tabular data and the ML-based 
models DT, KNN, LASSO, SVM and TabPFN; and (2) images generated 
with LM-IGTD and CNNs. Fig.  1 shows the workflow of the data-driven 
approach for transforming tabular data into images and the transfer 
learning technique on data belonging to patients with CVDs.

3.1. Experimental setup

The training of the CNN-based models and hyperparameter opti-
mization were performed using an NVIDIA RTX 4000 ADA, while the 
tabular-to-image transformation was executed using 50 CPU cores from 
an AMD EPYC 7713P 64-core processor. CNN-based models were im-
plemented with Pytorch (version: 2.1.2) [46]. To determine the best 
hyperparameter values in CNNs, we used the Python library raytune
(version: 2.9.1) [47], which is used for distributed hyperparameter 
tuning. For each model, we conducted 200 different combinations. 
The following hyperparameter values were considered: the image size 
{25×25, 35 × 35, 45×45}; the kernel size {3×3, 4 × 4, 5×5}; the number 
of filters {8, 16, 32, 64} of the convolutional layers; the kernel size 
[2×2, 3×3] of the max pooling layer; the output size (dense_units) with 
values {32, 64, 128}, the dropout rate {0.1, 0.2, 0.4}, the optimizers Adam 
and RMSProp, and the learning rate values between [0.0001, 0.01].

We compared the performance of CNNs with traditional ML-based 
models trained with tabular data, including LASSO, KNN, SVM, and 
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DT [34,35]. To find the best hyperparameter values for these models, 
k-fold cross validation [34] (with k=5) over the balanced 𝐷𝑡𝑟𝑎𝑖𝑛 was 
employed and using AUCROC as the figure of merit. The following 
hyperparameters were explored: 𝐶 in the range [1𝑒−1.5, 1𝑒0.4] for LASSO, 
𝐾 between [1...15] for KNN, and 𝛾 ∈ {1𝑒−2, 1𝑒−3, 1𝑒−4, 1𝑒−5} and 𝐶 in 
the range [1𝑒−1...1𝑒1] for SVM. For DT, the maximum depth within 
the range [2...8] and the minimum samples per split are selected based 
on the training subset size. Regarding TabPFN, we evaluated different 
values for n_estimators, specifically {5, 10, 15}.

3.2. Tabular-to-image generation using IGTD with noisy features

The generation of noisy features resulted in medium size images that 
improved the pixel relationships in the images generated with the LM-
IGTD algorithm. Fig.  2 presents the pairwise correlation between the 
features of 𝐷′

𝑓  (composed by the original features 𝑥 and noisy features 
𝑧) for both the Fram-data and Steno-data. The HoNG approach (Fig. 
4 (a-b)) produced a matrix that quadrupled the number of features in 
the original dataset, increasing from five original features (𝐷𝑓 = 5) to 
20 features (𝐷′

𝑓 = 20) in the noisy dataset, due to the addition of three 
noisy features per original feature. The correlation matrix evidences 
this expansion as repeated patterns, indicating that while the noisy 
features are different, they retain a similarity to the original features. 
When applying the HeNG approach (Fig.  4(c–d)), we used only a subset 
of the noisy features generated with the HoNG to augment the dataset. 
The resulting noisy dataset comprised a total of 16 features (𝐷′

𝑓 = 16), 
consisting of the five original features (𝐷𝑓 = 5) and nine noisy features 
selected.

Fig. 2. Pairwise correlation heatmaps illustrating the relationship between original and 
noisy features. The noise was generated using: (a,b) HoNG; and (c,d) HeNG. These 
analyses were conducted on two datasets: (a,c) Fram-data; and (b,d) Steno-data. The 
color intensity reflects the strength of the correlation, with lighter colors indicating 
stronger correlations and darker colors indicating weaker correlations.

Fig.  3 illustrates the 2D grayscale images generated using the LM-
IGTD algorithm applied to samples from Fram-data and Steno-data, 
using the HoNG and HeNG approaches to generate noisy features. The 
images generated using the HoNG have a dimension of 5 × 4 pixels 
as they are generated from a feature set 𝑧 with 𝐷′

𝑓 = 20, whereas 
the HeNG images have a dimension of 4 × 4 pixels because they are 
generated from a feature set 𝑧 with 𝐷′

𝑓 = 16. The LM-IGTD algorithm 
arranges the pixels within the generated images Q, resulting in a spatial 
configuration where similar features are placed close together, and 
dissimilar features are placed further apart [28].
6 
Fig. 3. 2D grayscale images generated with LM-IGTD applied to the: (a, b, c, d) Fram-
data, and (e, f, g, h) Steno-data. The noisy features were generated using: (a,b,e,f) 
HoNG; and (c, d, g, h) HeNG (e–f). The grayscale value of each pixel indicates the 
value of the corresponding feature.

3.3. Cardiovascular disease classification results with tabular data and 
images generated with LM-IGTD

Table  3 presents the results of various ML-based models applied to 
the Fram-data. Among the tabular models, LASSO achieved the highest 
AUCROC, with a value of 0.644±0.012. When using images generated by 
LM-IGTD and analyzed with CNNs, the models achieved accuracies of 
0.663±0.017 and 0.655±0.023 for HeNG and HoNG, respectively. HeNG 
demonstrated a performance improvement in AUCROC of 6.1% and 
4..8% over DT and KNN, respectively. Meanwhile, the AUCROC value 
of the CNN which uses HeNG was more comparable to those obtained 
with LASSO, SVM, and TabPFN, with differences of 1.9%, 2.2%, and 
2.9%. Regarding sensitivity and specificity, SVM achieved the highest 
sensitivity, with a value of 0.664±0.028, while CNN-HeNG achieved the 
highest specificity, with a value of 0.688 ± 0.052.

Table 3
Classification results (measured by mean±std) using the Fram-data and the models DT, 
KNN, LASSO, SVM, TabPFN and CNNs. The best results for each metric are in bold. 
(N/A: not applicable).
 Model Type AUCROC Sensitivity Specificity  
 Model noise  
 DT N/A 0.602 ± 0.017 0.612 ± 0.088 0.592 ± 0.098  
 KNN N/A 0.625 ± 0.014 0.612 ± 0.0.027 0.637 ± 0.033  
 LASSO N/A 0.644 ± 0.012 0.635 ± 0.012 0.653 ± 0.011  
 SVM N/A 0.641 ± 0.008 0.664 ± 0.028 0.618 ± 0.027  
 TabPFN N/A 0.634 ± 0.011 0.633 ± 0.011 0.634 ± 0.023  
 CNN HeNG 0.663 ± 0.017 0.628 ± 0.056 0.688 ± 0.052 
 CNN HoNG 0.655 ± 0.023 0.622 ± 0.067 0.669 ± 0.059  

Table  4 presents the classification results using the Steno dataset. 
Among the tabular models, LASSO and TabPFN achieved the highest 
AUCROC values, with 0.835 ± 0.020 and 0.835 ± 0.015, respectively. 
By applying the LM-IGTD combined with CNNs methodology, an AU-
CROC of 0.842 ± 0.026 was achieved with HoNG, and an AUCROC of 
0.844 ± 0.025 was achieved with HeNG, resulting in an improvement 
of 0.9% in AUCROC compared to the best tabular models. In addition, 
this methodology enhanced sensitivity (0.865 ± 0.055) compared to the 
baseline models LASSO (0.845 ± 0.046) and TabPFN (0.840 ± 0.048), 
while maintaining a comparable specificity (0.822) in the three models. 
Finally, using the proposed fine-tuning approach with HoNG resulted 
in an AUCROC of 0.853 ± 0.022, while fine-tuning with the HeNG 
approach achieved an AUCROC of 0.855 ± 0.018. These improvements 
represent a 2% (HeNG) and 1.8% (HoNG) increase, respectively, over 
the best tabular model. In addition, the fine-tuning process improved 
the balance between sensitivity (0.865 ± 0.065) and specificity (0.844 ±
0.037) for the HeNG compared to traditional models.
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Table 4
Classification results (measured by mean±std) using the Steno-data and the models DT, KNN, LASSO, SVM and CNNs. The best results for each 
metric are in bold. (N/A: not applicable; N/U: not used).
 Model Type 

noise
Fine-
tuning

AUCROC Sensitivity Specificity  

 DT N/A N/A 0.789 ± 0.018 0.792 ± 0.094 0.787 ± 0.083  
 KNN N/A N/A 0.805 ± 0.024 0.829 ± 0.049 0.782 ± 0.040  
 LASSO N/A N/A 0.835 ± 0.020 0.845 ± 0.046 0.824 ± 0.017  
 SVM N/A N/A 0.830 ± 0.021 0.841 ± 0.045 0.819 ± 0.023  
 TabPFN N/A N/A 0.835 ± 0.015 0.840 ± 0.048 0.829 ± 0.030  
 CNN HeNG N/U 0.844 ± 0.025 0.865 ± 0.055 0.822 ± 0.055  
 CNN HoNG N/U 0.842 ± 0.026 0.877 ± 0.057 0.798 ± 0.042  
 CNN HeNG ✓ 0.855 ± 0.018 0.865 ± 0.065 0.844 ± 0.037 
 CNN HoNG ✓ 0.853 ± 0.022 0.881 ± 0.038 0.823 ± 0.036  
3.4. Identifying risk factors in cardiovascular diseases using class activation 
maps

To gain interpretability of the classification results using CNN-based 
models, we employed the post-hoc interpretability method named 
Grad-CAM. This method allows us to identify which parts of images 
are more relevant (represented by orange and red colors in heatmaps) 
for classification when CNN-based models are considered. Note that 
the LM-IGTD algorithm transforms individual features into pixels and 
rearranges them based on their correlations and similarities, and once 
the image is transformed, we can identify the features associated with 
each pixel. After model training, we apply Grad-CAM to determine the 
most saliency areas of the images involved in the classification, and 
then, which are the most relevant features.

Fig.  4 shows some examples of Grad-CAM heatmaps for the Fram 
and Steno datasets using the HeNG and HoNG. Figures on the left 
present the resulting images of LM-IGTD, and to identify the features in 
the interpretability analysis, we added colored circles (corresponding to 
the legend). The colors indicate the features used in the classification 
task, for example in Fig.  4(a): red (sex), blue (age), gray (sbp), black 
(glucose), and pink (smoker). Figures on the right show the heatmap 
generated by Grad-CAM, highlighting the importance of each feature 
in the model’s predictions. The red and orange regions indicate areas 
where features had the highest relevance for classification, whereas 
blue regions represent areas of lower importance.

In Fig.  4, we observe that the pixels related to age, sex, and glucose 
were those with the highest impact on the model’s decision according 
to the Grad-CAM images (see positions with warm colors in the Grad-
CAM heatmaps). The feature age appears as a highly relevant feature 
for predictions using HoNG and HeNG on the Fram dataset, and HoNG 
on the Steno dataset. The sex feature is crucial for HoNG in the Fram 
dataset and HeNG in the Steno dataset. Lastly, the glucose variable is 
relevant across all the approaches. Fig.  4 presents only one sample per 
approach; however, in general, the same three features are the most 
relevant ones for CVD detection in the majority of the samples.

4. Discussion

In this study, we evaluated the effectiveness of the tabular-to-image 
method named LM-IGTD for creating 2D images from tabular data 
belonging to patients with CVD, and the feasibility of using transfer 
learning in CNN-based models to improve CVD classification. The 
datasets Fram-data and Steno-data, which are extensively used in CVD 
risk identification, were considered. Initially, Fram-data and Steno-data 
were composed of 15 and 10 features, respectively, but some of these 
features were discarded to ensure the same set of features in both 
datasets, which is crucial for effective transfer learning and fine-tuning 
in our approach. To address the challenges caused by the number 
of features (low-dimensionality) and mixed-type data (categorical and 
continuous features) in tabular-to-image methods, LM-IGTD was used.

In LM-IGTD, first, we generated noisy features by aiming to augment 
the dimension of the datasets and increase the number of pixels in 
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Fig. 4. Analysis of feature importance using Grad-CAM heatmaps. Interpretable images 
extracted from the CNN for patients who suffered a CVD from the Fram dataset (a, b, 
c, d) and the Steno dataset (e, f, g, h). The images were extracted from the HoNG noisy 
dataset (a, b, e, f) and the HeNG noisy dataset (c, d, g, h). Images (a, c, e, g) represent 
the features related to each pixel, while images (b, d, f, h) show the importance of 
each pixel to the final classification as determined by Grad-CAM.

the resulting 2D images. This was achieved following two approaches: 
HoNG and HeNG. Regarding HoNG, we generated 3 noisy features 
per original feature, resulting in a noisy dataset with 20 features. 
Conversely, only 11 noisy features were added using HeNG, leading 
to a noisy dataset composed of 16 features. Subsequently, using the 
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augmented Fram-data and Steno-data, we employed LM-IGTD to trans-
form the tabular data into 2D images. The HoNG approach generated 
images with dimensions of 5 × 4, while the HeNG approach generated 
images with dimensions of 4 × 4. Then, we trained a CNN with two 
convolutional layers and two fully connected dense layers using the 
Fram-data images. Finally, we froze the two convolutional layers and 
trained the two dense layers with images generated with LM-IGTD and 
belonging to Steno-data.

Regarding Fram-data, the transformation of the data into images 
and the use of CNN-based models did not improve the results obtained 
with tabular ML-based models (DT, KNN, LASSO, SVM, and TabPFN). 
The best performance of a tabular model was achieved by Lasso reach-
ing an AUCROC of 0.644 ± 0.012, whereas the best LM-IGTD approach 
obtained an AUCORC of 0.663 ± 0.017 using HeNG. Therefore, the 
use of the LM-IGTD algorithm improved the AUCROC by 1.9% in the 
Fram-data

Regarding the Steno-data, the use of LM-IGTD improved CVD classi-
fication performance compared to ML-based models trained on tabular 
data. Using LM-IGTD with HeNG, we achieved an AUCROC of 0.844 ±
0.025, representing a 0.9% improvement over the best tabular model, 
TabPFN (0.835±0.015). Lastly, the best result was obtained by perform-
ing transfer learning and fine-tuning on the noisy dataset generated 
using HeNG. By training the CNN on the Fram dataset with HeNG 
and applying transfer learning and fine-tuning on the Steno dataset, 
an AUCROC of 0.855 ± 0.018 was achieved. This result represents a 
1.1% improvement over the classical LM-IGTD approach and a 2% 
improvement over novel tabular models such as TabPFN.

Reviewing the results, LM-IGTD with HeNG proved to be effec-
tive in the generation of medium-sized images, which is crucial for 
training CNNs and obtaining predictive results compared to tabular 
ML models such as DT, KNN, LASSO, TabPFN, and SVM. The HeNG 
approach achieved better results compared to HoNG in the LM-IGTD 
methodology across both datasets. Thus, correctly selecting the number 
of noisy features created is crucial for enhancing model performance. 
There is a limit to the inclusion of noisy features to enlarge the dataset, 
as it can negatively affect the performance of the classification model. 
Consequently, adding too many noisy features does not result in an 
optimal model performance.

For transfer learning in our approach, it is essential that the large
and small datasets present common features, such as age in both datasets.
Furthermore, to achieve optimal performance, these common features 
must exhibit similar probability density functions (for continuous fea-
tures) or probability mass functions (for categorical features). In this 
article, it is worth noting that despite using the same features in Steno-
data and Fram-data, the characteristics of the participants in both 
datasets are different. Steno-data consists of data from adult patients 
diagnosed with T1D, which can lead to differences in the glucose 
level and age mean compared to patients from Fram-data ( Table  2). 
Despite the differences in features between the datasets, the transfer 
learning approach allowed us to achieve the highest performance in 
the Steno-data.

Reviewing the interpretability images extracted from the Grad-
CAM, the three most relevant variables for CVD prediction are age, sex, 
and glucose concentration. These results are closely aligned with the 
literature [16]. According to several studies, age is a crucial factor in 
the development of CVDs, as the risk of CVD increases exponentially 
with age [48,49]. Additionally, sex has been identified as one of the 
main risk factors in the development of CVDs in previous studies [48,
50], with men being at higher risk of suffering from CVD compared 
to women. Lastly, high blood glucose levels are closely related to 
several CVDs, such as coronary heart disease and heart failure, among 
others [51,52].

In future work, we plan to evaluate the performance of transfer 
learning on other datasets that have similar features in both the large
and small datasets. Moreover, this proof-of-concept needs to be ex-
tended to other datasets with a diverse number of features and in differ-
ent knowledge domains to ensure the effectiveness of this methodology. 
8 
Additionally, to improve the predictive performance and interpretabil-
ity, we can explore the integration of attention mechanisms, evaluating 
transformer-based models and vision transformers [53]. Attention lay-
ers have demonstrated the capability to capture feature interactions and 
can help to gain an understanding of the model’s predictions.

5. Conclusion

In this study, we evaluated the use of a tabular-to-image approach 
LM-IGTD to improve CVD detection in imbalanced datasets with a low 
number of features, including Fram-data and Steno-data. The experi-
mental results demonstrated the effectiveness of combining LM-IGTD 
and CNNs to create more generalizable models capable of improv-
ing CVD detection. LM-IGTD proved to be beneficial for improving 
predictive performance, achieving AUCROC values of 0.844 ± 0.020 
and 0.842 ± 0.026 with CNNs and HeNG and HoNG for the Steno-
data, respectively. Moreover, we proposed a pipeline that uses data 
from both datasets and involves transfer learning and fine-tuning. The 
proposed methodology requires training CNNs using the Fram-data 
after the tabular-to-image transformation with LM-IGTD. Then, we 
performed transfer-learning and fine-tuning using the pre-trained CNNs 
and data from Steno-data. As a result, we achieved an AUCROC of 
0.855 ± 0.018, outperforming the results of traditional ML models by 
2%. Additionally, we apply post-hoc interpretability to the generated 
images, which highlights the importance of age, sex, and glucose levels 
in predicting the potential onset of CVD in the future. This study 
represents one of the first attempts to apply and assess the effectiveness 
of transfer learning and fine-tuning using tabular-to-image approaches. 
Our work also contributes to enhancing CVD detection, which is crucial 
for effective decision-making and early intervention, thus aiming to 
avoid acute events related to CVDs.
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