Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/139739
Título: CNN-Based Human Detection and Identification in Indoor Optical Camera Communication Systems Using a Wearable LED Strip
Autores/as: Niarchou, Eleni 
Usmani, Atiya Fatima
Matus, Vicente 
Rabadán, José A. 
Guerra, Victor 
Alves, Luis Nero
Perez-Jimenez, Rafael 
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Cameras
Image Sensors
Led Lamps
Object Detection
Optical Communication, et al.
Fecha de publicación: 2025
Publicación seriada: IET Optoelectronics 
Resumen: In this paper, we present a proof of concept for an indoor optical camera communication (OCC) system utilising a deep learning network to detect and identify humans wearing light-emitting diode (LED) strips. Specifically, we propose using the You Only Look Once (YOLO) version 8 object detection algorithm, which is built on convolutional neural networks (CNNs), to identify wearable LED transmitters in challenging scenarios such as low visibility, mobility and multiple users, followed by image processing to effectively decode the transmitted data. The red-green-blue (RGB) LED strip's colours (red, green, blue and white) serve as indicators of the user's status. By combining communication and monitoring functionalities, the LEDs facilitate not only the transmission of user data but also accurate detection, tracking and identification within the environment. This demonstrates the feasibility of utilising widely available devices like LED strips and cameras, commonly found in many buildings, with potential applications in high-risk environments where monitoring individuals' physical conditions is crucial. The obtained results indicate our system's effectiveness, as it achieved up to 100% success of reception (SoR) in a static experimental setup, 96.2% in a walking experimental setup with one user and showed no effectiveness with two users.
URI: https://accedacris.ulpgc.es/handle/10553/139739
ISSN: 1751-8768
DOI: 10.1049/ote2.70005
Fuente: IET Optoelectronics[ISSN 1751-8768],v. 19 (1), (Enero 2025)
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.