Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/139739
Campo DC Valoridioma
dc.contributor.authorNiarchou, Elenien_US
dc.contributor.authorUsmani, Atiya Fatimaen_US
dc.contributor.authorMatus, Vicenteen_US
dc.contributor.authorRabadán, José A.en_US
dc.contributor.authorGuerra, Victoren_US
dc.contributor.authorAlves, Luis Neroen_US
dc.contributor.authorPerez-Jimenez, Rafaelen_US
dc.date.accessioned2025-06-09T11:15:29Z-
dc.date.available2025-06-09T11:15:29Z-
dc.date.issued2025en_US
dc.identifier.issn1751-8768en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139739-
dc.description.abstractIn this paper, we present a proof of concept for an indoor optical camera communication (OCC) system utilising a deep learning network to detect and identify humans wearing light-emitting diode (LED) strips. Specifically, we propose using the You Only Look Once (YOLO) version 8 object detection algorithm, which is built on convolutional neural networks (CNNs), to identify wearable LED transmitters in challenging scenarios such as low visibility, mobility and multiple users, followed by image processing to effectively decode the transmitted data. The red-green-blue (RGB) LED strip's colours (red, green, blue and white) serve as indicators of the user's status. By combining communication and monitoring functionalities, the LEDs facilitate not only the transmission of user data but also accurate detection, tracking and identification within the environment. This demonstrates the feasibility of utilising widely available devices like LED strips and cameras, commonly found in many buildings, with potential applications in high-risk environments where monitoring individuals' physical conditions is crucial. The obtained results indicate our system's effectiveness, as it achieved up to 100% success of reception (SoR) in a static experimental setup, 96.2% in a walking experimental setup with one user and showed no effectiveness with two users.en_US
dc.languageengen_US
dc.relation.ispartofIET Optoelectronicsen_US
dc.sourceIET Optoelectronics[ISSN 1751-8768],v. 19 (1), (Enero 2025)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherCamerasen_US
dc.subject.otherImage Sensorsen_US
dc.subject.otherLed Lampsen_US
dc.subject.otherObject Detectionen_US
dc.subject.otherOptical Communicationen_US
dc.subject.otherOptical Trackingen_US
dc.titleCNN-Based Human Detection and Identification in Indoor Optical Camera Communication Systems Using a Wearable LED Stripen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1049/ote2.70005en_US
dc.identifier.scopus105005024263-
dc.contributor.orcid0000-0003-1875-1833-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0003-4262-3882-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-8849-592X-
dc.contributor.authorscopusid57447772600-
dc.contributor.authorscopusid59432091200-
dc.contributor.authorscopusid57203117554-
dc.contributor.authorscopusid6701924182-
dc.contributor.authorscopusid55650664600-
dc.contributor.authorscopusid7102466722-
dc.contributor.authorscopusid56044417600-
dc.identifier.eissn1751-8776-
dc.identifier.issue1-
dc.relation.volume19en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateEnero 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
dc.description.sjr0,459
dc.description.jcr2,3
dc.description.sjrqQ2
dc.description.jcrqQ2
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Fotónica y Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptGIR IDeTIC: División de Fotónica y Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptGIR IDeTIC: División de Fotónica y Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Fotónica y Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptGIR IDeTIC: División de Fotónica y Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0003-1875-1833-
crisitem.author.orcid0000-0003-4262-3882-
crisitem.author.orcid0000-0002-9994-4495-
crisitem.author.orcid0000-0002-6264-7577-
crisitem.author.orcid0000-0002-8849-592X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.fullNameNiarchou, Eleni-
crisitem.author.fullNameMatus Icaza, Vicente-
crisitem.author.fullNameRabadán Borges, José Alberto-
crisitem.author.fullNameGuerra Yanez, Victor-
crisitem.author.fullNamePérez Jiménez, Rafael-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.