Please use this identifier to cite or link to this item: https://accedacris.ulpgc.es/handle/10553/139733
DC FieldValueLanguage
dc.contributor.authorFernández-López, Pabloen_US
dc.contributor.authorBáez, Patricio Garcíaen_US
dc.contributor.authorCabrera-León, Ylermien_US
dc.contributor.authorNavarro-Mesa, Juan L.en_US
dc.contributor.authorPérez-Acosta, Guillermoen_US
dc.contributor.authorBlanco López, José Javieren_US
dc.contributor.authorSuárez-Araujo, Carmen Pazen_US
dc.date.accessioned2025-06-09T11:03:50Z-
dc.date.available2025-06-09T11:03:50Z-
dc.date.issued2025en_US
dc.identifier.issn0010-4825en_US
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139733-
dc.description.abstractReal-world applications, particularly in the medical field, often handle irregular time signals (ITS) with non-uniform intervals between measurements. These irregularities arise due to missing data, inconsistent sampling frequencies, and multi-sensor signals from different sources. Predicting outcomes using ISMTS is complex, especially when missing data is involved. This paper introduces the Binomial Gate LSTM (BigLSTM), a modular Recurrent Neural Network model designed to process ISMTS. Built on the LSTM network, BigLSTM integrates techniques for handling irregular time intervals and multiple sampling rates by injecting information redundancy. BigLSTM comprises five interconnected modules. Four are dedicated to information processing: Information Distribution, Central Computing, Predictive, and Time Axis Processing Modules. These modules ensure the redundancy of system, making it tolerant to missing data. The fifth module, LSTM Cells On/Off Control, manages the internal operations of the network. BigLSTM was tested on a critical clinical problem: predicting endotracheal obstruction in COVID-19 patients in intensive care units using ventilatory signals from 96 patients. BigLSTM achieved a mean validation mean squared error (MSE) of 0.028 for patients with obstructions and 0.2 for the entire dataset. Additionally, we analysed the prediction tendencies of the system, finding an advance trend of 3.87 days and a delay trend of 2.15 days for distant predictions (7 days), with shorter intervals for near predictions (48 h). BigLSTM provided an obstruction prediction, in the short-term, not earlier than the next 10.64 h, and not later than the next 6.8 days, with a confidence percentage of 95%, indicating its effectiveness in handling irregular time series data.en_US
dc.languageengen_US
dc.relation.ispartofComputers in Biology and Medicineen_US
dc.sourceComputers in Biology and Medicine[ISSN 0010-4825],v. 192, (Junio 2025)en_US
dc.subject3314 Tecnología médicaen_US
dc.subject.otherCovid-19en_US
dc.subject.otherDeep Learningen_US
dc.subject.otherEndotracheal Obstructionen_US
dc.subject.otherForecastingen_US
dc.subject.otherIrregular Samplingen_US
dc.subject.otherLstmen_US
dc.subject.otherMissing Dataen_US
dc.subject.otherRecurrent Neural Networken_US
dc.titleBigLSTM: Recurrent neural network for the treatment of anomalous temporal signals. Application in the prediction of endotracheal obstruction in COVID-19 patients in the intensive care uniten_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.compbiomed.2025.110146en_US
dc.identifier.scopus105003103089-
dc.contributor.orcid0000-0002-2135-6095-
dc.contributor.orcid0000-0002-9973-5319-
dc.contributor.orcid0000-0001-5709-2274-
dc.contributor.orcid0000-0003-3860-3424-
dc.contributor.orcidNO DATA-
dc.contributor.orcid0000-0002-6027-9934-
dc.contributor.orcid0000-0002-8826-0899-
dc.contributor.authorscopusid6602579067-
dc.contributor.authorscopusid59211768500-
dc.contributor.authorscopusid57192423564-
dc.contributor.authorscopusid9634488300-
dc.contributor.authorscopusid36126680500-
dc.contributor.authorscopusid6506029376-
dc.contributor.authorscopusid6603605708-
dc.identifier.eissn1879-0534-
dc.relation.volume192en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.utils.revisionen_US
dc.date.coverdateJunio 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-INFen_US
dc.description.sjr1,481
dc.description.jcr7,0
dc.description.sjrqQ1
dc.description.jcrqQ1
item.fulltextCon texto completo-
item.grantfulltextopen-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Ciencias Clínicas-
crisitem.author.deptGIR IUCES: Computación inteligente, percepción y big data-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-2135-6095-
crisitem.author.orcid0000-0001-5709-2274-
crisitem.author.orcid0000-0003-3860-3424-
crisitem.author.orcid0000-0002-8826-0899-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameFernández López, Pablo Carmelo-
crisitem.author.fullNameCabrera León, Ylermi-
crisitem.author.fullNameNavarro Mesa, Juan Luis-
crisitem.author.fullNameBlanco López, José Javier-
crisitem.author.fullNameSuárez Araujo, Carmen Paz-
Appears in Collections:Artículos
Adobe PDF (3,27 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.