Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/139723
Campo DC Valoridioma
dc.contributor.authorJurado-Verdu, Cristoen_US
dc.contributor.authorGuerra, Victoren_US
dc.contributor.authorGuerra, Carlosen_US
dc.contributor.authorRabadán, José A.en_US
dc.contributor.authorZvanovec, Stanislaven_US
dc.contributor.authorPerez-Jimenez, Rafaelen_US
dc.date.accessioned2025-06-09T07:24:44Z-
dc.date.available2025-06-09T07:24:44Z-
dc.date.issued2022en_US
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/139723-
dc.description.abstractThe camera's exposure time restricts the reception bandwidth in rolling shutter-based optical camera communication links. Short exposures are preferable for communications, but under these conditions, the camera produces dark images with impracticable light conditions for human or machine-supervised applications. Alternatively, deep learning equalization stages can mitigate the effects of increasing the exposure time. These equalizers are trained using synthetic images based on the camera's exposure time and row sampling frequency. If these parameters are unknown in advance, another artificial network is used to estimate them directly for the captured images, the estimator. This estimator is trained offline using a vast number (thousands) of representative cases. This work proposes to transfer the attained knowledge from the offline pretrained estimator to the equalizer by using transfer learning techniques. In this way, the equalizers' training time is significantly reduced (435 times compared to full training). Consequently, transfer learning enables equalizers' online and on-demand training at reception without interfering with the communications. Results reveal that the complete training requires using exclusively 250 synthetic images to guarantee a communication performance with a bit error rate below 10(-4) after the equalization.en_US
dc.languageengen_US
dc.source13Th International Symposium On Communication Systems, Networks And Digital Signal Processing, CSNDSPen_US
dc.subject3307 Tecnología electrónicaen_US
dc.subject.otherRolling Shutteren_US
dc.subject.otherOptical Camera Communicationen_US
dc.subject.otherVisible Light Communicationen_US
dc.subject.otherEqualizationen_US
dc.subject.otherTransfer Learningen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherArtificial Intelligenceen_US
dc.titleOn-demand training of deep learning equalizers for rolling shutter optical camera communicationsen_US
dc.typeinfo:eu-repo/semantics/conferenceObjecten_US
dc.typeConferenceObjecten_US
dc.relation.conference13Th International Symposium On Communication Systems, Networks And Digital Signal Processing, CSNDSPen_US
dc.identifier.doi10.1109/CSNDSP54353.2022.9907920en_US
dc.identifier.isi001331792600029-
dc.description.lastpage149en_US
dc.description.firstpage145en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Actas de congresosen_US
dc.contributor.daisngid29881732-
dc.contributor.daisngid1477848-
dc.contributor.daisngid21934483-
dc.contributor.daisngid911006-
dc.contributor.daisngid29244699-
dc.contributor.daisngid2421782-
dc.description.numberofpages5en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Jurado-Verdu, C-
dc.contributor.wosstandardWOS:Guerra, V-
dc.contributor.wosstandardWOS:Guerra, C-
dc.contributor.wosstandardWOS:Rabadan, J-
dc.contributor.wosstandardWOS:Zvánovec, S-
dc.contributor.wosstandardWOS:Perez-Jimenez, R-
dc.date.coverdate2022en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IDeTIC: División de Fotónica y Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.deptGIR IDeTIC: División de Fotónica y Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IDeTIC: División de Fotónica y Comunicaciones-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.orcid0000-0002-7371-5563-
crisitem.author.orcid0000-0002-6264-7577-
crisitem.author.orcid0000-0002-9994-4495-
crisitem.author.orcid0000-0002-8849-592X-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC)-
crisitem.author.fullNameJurado Verdu, Cristo Manuel-
crisitem.author.fullNameGuerra Yanez, Victor-
crisitem.author.fullNameRabadán Borges, José Alberto-
crisitem.author.fullNamePérez Jiménez, Rafael-
Colección:Actas de congresos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.