Please use this identifier to cite or link to this item:
https://accedacris.ulpgc.es/handle/10553/139723
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jurado-Verdu, Cristo | en_US |
dc.contributor.author | Guerra, Victor | en_US |
dc.contributor.author | Guerra, Carlos | en_US |
dc.contributor.author | Rabadán, José A. | en_US |
dc.contributor.author | Zvanovec, Stanislav | en_US |
dc.contributor.author | Perez-Jimenez, Rafael | en_US |
dc.date.accessioned | 2025-06-09T07:24:44Z | - |
dc.date.available | 2025-06-09T07:24:44Z | - |
dc.date.issued | 2022 | en_US |
dc.identifier.other | WoS | - |
dc.identifier.uri | https://accedacris.ulpgc.es/handle/10553/139723 | - |
dc.description.abstract | The camera's exposure time restricts the reception bandwidth in rolling shutter-based optical camera communication links. Short exposures are preferable for communications, but under these conditions, the camera produces dark images with impracticable light conditions for human or machine-supervised applications. Alternatively, deep learning equalization stages can mitigate the effects of increasing the exposure time. These equalizers are trained using synthetic images based on the camera's exposure time and row sampling frequency. If these parameters are unknown in advance, another artificial network is used to estimate them directly for the captured images, the estimator. This estimator is trained offline using a vast number (thousands) of representative cases. This work proposes to transfer the attained knowledge from the offline pretrained estimator to the equalizer by using transfer learning techniques. In this way, the equalizers' training time is significantly reduced (435 times compared to full training). Consequently, transfer learning enables equalizers' online and on-demand training at reception without interfering with the communications. Results reveal that the complete training requires using exclusively 250 synthetic images to guarantee a communication performance with a bit error rate below 10(-4) after the equalization. | en_US |
dc.language | eng | en_US |
dc.source | 13Th International Symposium On Communication Systems, Networks And Digital Signal Processing, CSNDSP | en_US |
dc.subject | 3307 Tecnología electrónica | en_US |
dc.subject.other | Rolling Shutter | en_US |
dc.subject.other | Optical Camera Communication | en_US |
dc.subject.other | Visible Light Communication | en_US |
dc.subject.other | Equalization | en_US |
dc.subject.other | Transfer Learning | en_US |
dc.subject.other | Deep Learning | en_US |
dc.subject.other | Artificial Intelligence | en_US |
dc.title | On-demand training of deep learning equalizers for rolling shutter optical camera communications | en_US |
dc.type | info:eu-repo/semantics/conferenceObject | en_US |
dc.type | ConferenceObject | en_US |
dc.relation.conference | 13Th International Symposium On Communication Systems, Networks And Digital Signal Processing, CSNDSP | en_US |
dc.identifier.doi | 10.1109/CSNDSP54353.2022.9907920 | en_US |
dc.identifier.isi | 001331792600029 | - |
dc.description.lastpage | 149 | en_US |
dc.description.firstpage | 145 | en_US |
dc.investigacion | Ingeniería y Arquitectura | en_US |
dc.type2 | Actas de congresos | en_US |
dc.contributor.daisngid | 29881732 | - |
dc.contributor.daisngid | 1477848 | - |
dc.contributor.daisngid | 21934483 | - |
dc.contributor.daisngid | 911006 | - |
dc.contributor.daisngid | 29244699 | - |
dc.contributor.daisngid | 2421782 | - |
dc.description.numberofpages | 5 | en_US |
dc.utils.revision | Sí | en_US |
dc.contributor.wosstandard | WOS:Jurado-Verdu, C | - |
dc.contributor.wosstandard | WOS:Guerra, V | - |
dc.contributor.wosstandard | WOS:Guerra, C | - |
dc.contributor.wosstandard | WOS:Rabadan, J | - |
dc.contributor.wosstandard | WOS:Zvánovec, S | - |
dc.contributor.wosstandard | WOS:Perez-Jimenez, R | - |
dc.date.coverdate | 2022 | en_US |
dc.identifier.ulpgc | Sí | en_US |
dc.contributor.buulpgc | BU-TEL | en_US |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
crisitem.author.dept | GIR IDeTIC: División de Fotónica y Comunicaciones | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC) | - |
crisitem.author.dept | GIR IDeTIC: División de Fotónica y Comunicaciones | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC) | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.dept | GIR IDeTIC: División de Fotónica y Comunicaciones | - |
crisitem.author.dept | IU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC) | - |
crisitem.author.dept | Departamento de Señales y Comunicaciones | - |
crisitem.author.orcid | 0000-0002-7371-5563 | - |
crisitem.author.orcid | 0000-0002-6264-7577 | - |
crisitem.author.orcid | 0000-0002-9994-4495 | - |
crisitem.author.orcid | 0000-0002-8849-592X | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC) | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC) | - |
crisitem.author.parentorg | IU para el Desarrollo Tecnológico y la Innovación en Comunicaciones (IDeTIC) | - |
crisitem.author.fullName | Jurado Verdu, Cristo Manuel | - |
crisitem.author.fullName | Guerra Yanez, Victor | - |
crisitem.author.fullName | Rabadán Borges, José Alberto | - |
crisitem.author.fullName | Pérez Jiménez, Rafael | - |
Appears in Collections: | Actas de congresos |
Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.