Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/138101
DC FieldValueLanguage
dc.contributor.authorLópez, Leopoldo-
dc.contributor.authorSuárez Ramírez, Jonay-
dc.contributor.authorAlemán Flores, Miguel-
dc.contributor.authorMonzón López, Nelson Manuel-
dc.date.accessioned2025-05-12T07:19:27Z-
dc.date.available2025-05-12T07:19:27Z-
dc.date.issued2025-
dc.identifier.issn0926-5805-
dc.identifier.otherScopus-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/138101-
dc.description.abstractThis paper presents an AI framework for automated detection of personal protective equipment (PPE) compliance in complex construction and industrial environments. Ensuring health and safety standards is essential for protecting workers engaged in construction, repair, or inspection activities. The framework leverages deep learning techniques for worker detection and pose estimation to enable accurate PPE identification under challenging conditions. The framework components are replaceable, and employ the InternImage-L detector for worker detection, ViTPose for pose estimation, and YOLOv7 for PPE recognition. A duplicate removal stage, combined with pose information, ensures PPE items are accurately assigned to individual workers. The approach addresses challenges like shadows, partial occlusions, or densely grouped workers. Evaluated on diverse datasets from real-world industrial settings, the framework achieves competitive precision and recall, particularly for critical PPE like helmets and vests, demonstrating robustness for safety monitoring and proactive risk management.-
dc.languageeng-
dc.relationDetección precisa mediante Inteligencia Artificial deeventos de interés en escenas de playa, costa y litoral.-
dc.relation.ispartofAutomation in Construction-
dc.sourceAutomation in Construction[ISSN 0926-5805],v. 176, (Agosto 2025)-
dc.subject120304 Inteligencia artificial-
dc.subject.otherPPE compliance-
dc.subject.otherDeep learning-
dc.subject.otherWorker detection-
dc.subject.otherPose estimation-
dc.subject.otherSafety and environment (HSE)-
dc.titleAutomated PPE compliance monitoring in industrial environments using deep learning-based detection and pose estimation-
dc.typeArticle-
dc.identifier.doi10.1016/j.autcon.2025.106231-
dc.identifier.scopus105004416174-
dc.contributor.orcid0000-0002-7066-4393-
dc.contributor.orcid0000-0002-6914-8308-
dc.contributor.orcid0000-0002-9258-0086-
dc.contributor.orcid0000-0003-0571-9068-
dc.contributor.authorscopusid58853562000-
dc.contributor.authorscopusid58885810800-
dc.contributor.authorscopusid55892084700-
dc.contributor.authorscopusid55749010500-
dc.relation.volume176-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.utils.revision-
dc.date.coverdateAgosto 2025-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-INF-
dc.description.sjr2,626-
dc.description.jcr9,6-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds11,0-
item.grantfulltextopen-
item.fulltextCon texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Informática y Sistemas-
crisitem.author.orcid0000-0002-9258-0086-
crisitem.author.orcid0000-0003-0571-9068-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameSuárez Ramírez, Jonay-
crisitem.author.fullNameAlemán Flores, Miguel-
crisitem.author.fullNameMonzón López, Nelson Manuel-
crisitem.project.principalinvestigatorTrujillo Pino, Agustín Rafael-
Appears in Collections:Artículos
Adobe PDF (10,29 MB)
Show simple item record

Google ScholarTM

Check

Altmetric


Share



Export metadata



Items in accedaCRIS are protected by copyright, with all rights reserved, unless otherwise indicated.