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 A B S T R A C T

This paper presents an AI framework for automated detection of personal protective equipment (PPE) compli-
ance in complex construction and industrial environments. Ensuring health and safety standards is essential 
for protecting workers engaged in construction, repair, or inspection activities. The framework leverages deep 
learning techniques for worker detection and pose estimation to enable accurate PPE identification under 
challenging conditions. The framework components are replaceable, and employ the InternImage-L detector 
for worker detection, ViTPose for pose estimation, and YOLOv7 for PPE recognition. A duplicate removal 
stage, combined with pose information, ensures PPE items are accurately assigned to individual workers. 
The approach addresses challenges like shadows, partial occlusions, or densely grouped workers. Evaluated 
on diverse datasets from real-world industrial settings, the framework achieves competitive precision and 
recall, particularly for critical PPE like helmets and vests, demonstrating robustness for safety monitoring 
and proactive risk management.
1. Introduction

Construction sites are high-risk environments where workers are 
exposed to substantial occupational hazards [1]. Adherence to health, 
safety, and environmental (HSE) regulations is essential to mitigate 
these risks and prevent accidents. Personal protective equipment (PPE) 
is among the most effective measures to reduce injuries, since many ac-
cidents, such as falls, electrocution, and being struck by objects, can be 
prevented through proper compliance with protective equipment [2]. 
Continuous monitoring of worker behavior and work conditions is crit-
ical to identify hazards and enforce compliance with safety protocols. 
Traditional human supervision is often insufficient in construction sites 
due to their highly dynamic environments, characterized by frequent 
interactions between machinery and workers.

Ensuring worker safety requires not only the use of PPE, but also 
the implementation of appropriate tools and systems to monitor and 
enforce safety protocols [3]. Construction sites, especially outdoor 
scenarios, present significant challenges, such as occlusions, overlapped 
workers, shadowed areas or variable luminance. Current PPE detection 
methods, particularly those based on neural networks, have demon-
strated promising results, but limitations still remain under these chal-
lenging conditions [4,5], specifically when detecting small PPE items 
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1 http://sivisrepnaval.com/.

or distant workers, as well as in cluttered environments with frequent 
worker and equipment overlaps. Additionally, variable lighting condi-
tions and occlusions introduce further difficulties, in particular when 
using single-camera systems.

Consequently, the ongoing need for robust systems capable of reli-
ably identifying workers and accurately assigning PPE to the correct 
individuals continues to attract researchers to contribute to the lit-
erature. In this sense, our paper aims to develop a robust system 
for real-time monitoring of PPE compliance using advanced computer 
vision and deep learning techniques.

Our research originates from the SIVIS initiative,1 which aims to 
enhance safety and operational efficiency in shipyards through the ap-
plication of artificial intelligence (AI) techniques. Although this project 
primarily focuses on workers in shipyards, the environment and activi-
ties share significant similarities with other construction sites, where 
the risks and PPE requirements are quite similar. Our current work 
extends to those additional scenarios, addressing safety concerns in 
various high-risk environments.

We present a framework designed to collectively address the lim-
itations mentioned above. Unlike some previous approaches, where 
the pose estimation is used as a tool for restricting PPE search ar-
eas, our strategy detects PPE independently and then leverages pose 
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information to refine worker-PPE matching. Our approach avoids the 
dependency on perfect pose estimation, reducing errors when body 
keypoints are inaccurately detected. Additionally, we introduce a col-
lision detection and duplicate removal module, which mitigates errors 
caused by overlapping workers—an issue that remains a challenge for 
many state-of-the-art methods. Supported by these components, our 
framework provides robust results for multiple challenges, particularly 
in complex scenes with high worker density.

Our proposal leverages advanced computer vision and deep learning 
techniques to monitor PPE compliance in real-time. Workers are de-
tected using a state-of-the-art model and cropped images of individuals 
are processed to identify PPE items and generate skeletal poses for 
precise PPE-to-body-part alignment. To enhance the visibility of PPE, 
linear interpolation is applied to resized crops, facilitating a better fea-
ture extraction for subsequent detections. We introduce mechanisms for 
collision detection and duplicate removal to resolve ambiguities caused 
by overlapping workers and improve the reliability of PPE assignment. 
The modular design ensures flexibility, allowing each component to be 
replaced with alternatives without compromising system performance.

Pose estimation has previously been used, but mainly to search for 
PPE items around the corresponding body part, instead of detecting 
them independently and using pose information and distances for the 
matching process (e.g., Vukicevic et al. [6] or Xiong et al. [7]). Some 
other works have improved PPE-worker association, but struggle with 
overlapping workers which make the matching worker-PPE particularly 
difficult (e.g., Nath et al. [8]). In this regard, we have introduced a 
collision detection and duplicate removal stage to ease this association. 
Finally, some previous works rely on multi-camera re-identification, but 
do not address single-camera scenarios, where occlusions are difficult 
to tackle (e.g., Cheng et al. [9]). Our proposal is built on similar con-
cepts, while introducing the combination of pose estimation, collision 
detection, and duplicate removal pursuing a reliable PPE assignment 
even in complex scenarios.

In our experiments, we validate the framework by performing an 
extensive evaluation comparing it with an improved version of [8], and 
our own implementations of [7]. These approaches have been chosen 
due to their relevance in PPE compliance monitoring. Additionally, 
we assess the modularity of our framework by testing different con-
figurations of its components, quantitatively evaluating the impact of 
alternative worker detectors and pose estimation.

Experiments on datasets from real construction sites and the Rep-
naval shipyard demonstrate high precision and recall, particularly for 
critical PPE items such as helmets and vests. By addressing key limi-
tations and introducing mechanisms to enhance robustness and flexi-
bility, this work demonstrates significant improvements in monitoring 
PPE compliance in real-world construction and shipyard environments. 
The performance of our approach is also analyzed under various envi-
ronmental conditions, worker densities, and PPE compliance scenarios, 
to validate its applicability in diverse real-world settings and to further 
assess its generalization capabilities.

The remainder of this paper is structured as follows. Section 2 
reviews relevant studies on PPE detection, worker identification, and 
pose estimation, highlighting the limitations of existing approaches. 
Section 3 describes the proposed framework, detailing its modular 
design. Section 4 presents the experimental setup, including dataset 
details, preprocessing steps, and evaluation metrics. Section 5 analyzes 
the quantitative and qualitative results, comparing our approach with 
state-of-the-art methods and assessing its performance under different 
challenging conditions. Additionally, we evaluate the modularity of 
our framework by testing different configurations of its components 
and analyzing their impact on performance. An ablation study is also 
presented. Finally, Section 6 summarizes the main conclusions of our 
work.
2 
2. Related works

Several works have addressed the automated detection of personal 
protective equipment (PPE) and worker pose, proposing different per-
spectives. Detecting them is especially challenging in open spaces, 
where factors such as changing illumination, large distances from the 
camera, shadows and occlusions come into play.

The detection of small objects on construction sites for safety rea-
sons has been addressed in works such as [10], where a small object 
detection (SOD) system is presented for comprehensive site monitor-
ing, based on the YOLOv5 algorithm. This work applies a multiscale 
approach to deal with objects of different sizes. Small objects here refer 
to those viewed from medium to large distances, appearing small in the 
image. This is often the case in the scenes analyzed in this work.

Regarding the identification of PPE, most works focus on specific 
elements of the attire to identify them based on their features. Thus, 
a large number of vision-based approaches for monitoring PPE com-
pliance focus on identifying hard hats. For instance, the work by 
Mneymneh et al. [11] evaluates the performance of feature detection, 
extraction and matching; template matching; and cascade classifiers 
for the detection of hard hats in construction environments. Fang 
et al. [12] use region-based convolutional neural networks (R-CNNs) to 
detect if a worker is wearing a hard hat, while Xie et al. [13] use fully 
convolution-based algorithms to detect hard hats. In [14], the authors 
also focus on hard hats and identify whether workers on construction 
sites wear them and what color they are. They propose a one-stage 
CNN-based method which aggregates multiscale features to deal with 
small-scale hard hats. Wu et al. [15] propose a semantic attribute recog-
nition based on the transformer architecture that identifies whether 
workers are wearing a helmet and a harness. Yang et al. [16] also focus 
on helmets and have created a dataset with images of people working 
in construction sites.

Although hats are the most commonly detected items, several works 
analyze other components of the attire. For instance, Wang et al. [17] 
deal with the detection of helmets in four colors, but also include safety 
vests and the detection of people themselves. A graph neural network 
is used by Zhao et al. [18] to detect four types of hats, vests, glasses, 
as well as people and their heads. This work performs an arc-flash 
analysis to assess the electrical hazard using a data augmentation few-
shot approach. In certain cases, additional information is utilized to 
facilitate the identification of the attire. For example, Seong et al. [19] 
consider the particular color of protection vests to identify them and 
then extract the workers in the scene. Nevertheless, these restricted 
approaches limit the extension, scalability and broader applicability of 
the method.

Some works address challenging conditions, such as poor illumi-
nation and small object sizes. For instance, Wang et al. [20] include 
a large-size input layer for multi-scale prediction and adjust the size 
of anchor boxes to cope with small helmets and protective clothes. 
In [21], the authors apply a neural net scheme under poor illumination 
conditions. The work in [22] focuses on the detection of hard hats, in 
both images and video, using color as well as monochrome images.

Methods can also be categorized into those using single shot detec-
tors (SSD), such as [14] for hard hat detection, and those processing a 
whole video sequence, such as [8]. The work by Cheng et al. [9] com-
bines worker re-identification and PPE classification. A loss function is 
included to learn more discriminative human features and improve the 
tracking of individual workers. Furthermore, a weighted-class strategy 
is used to reduce the impact of imbalance among classes.

In [3], the authors isolate moving workers and any hard hat around 
the top area of a worker’s box is located. The work in [15] extracts 
attention regions for the identification of helmets and harnesses and 
presents images with an increased complexity,2 because of occlusions, 
overlapping and illumination problems.

2 https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset.

https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset
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Table 1
Summary of the most relevant works in PPE compliance monitoring and key aspects of each proposal.
 Reference Description  
  Xiong et al. [7] Pose estimation to identify head and upper body.  
 Binary classifier to determine if a worker is wearing a hat/vest.  
 
Nath et al. [8]

Three approaches using YOLO-v3:  
 (a) Independent worker and PPE detection, then linked.  
 (b) Single object detection for workers and PPE.  
 (c) Step 1: Worker detection, Step 2: PPE detection around them. 
 
Cheng et al. [9]

Multiple cameras, moving workers.  
 Worker re-identification.  
 Weighted class strategy for PPE classification.  
 
Vukicevic et al. [6]

18 different PPE classes and 5 body parts.  
 Pose estimator used to define regions of interest.  
 MobileNetV2 recommended.  
The information extracted from the scenes is crucial to analyze the 
risks and identify dangerous situations. Thus, workers can be detected 
in images, tracked in video sequences, and analyzed for their safety 
state based on extracted features. In [23], a standard version of the 
YOLOv3 is applied to classify the scene into different categories ac-
cording to the presence of safety attire. In [24], the authors present 
different object recognition models to identify workers, their risks and 
the use of appropriate safety elements.

The combination of the different PPE elements and the worker’s 
pose is also important for certain analyses. In this way, several works 
combine the detection of PPE with identifying workers, their heads, 
or their poses. Vukicevic et al. [6] consider 18 PPE types and 5 body 
regions. The regions of interest are extracted using the HigherHRNet 
pose estimator and classified by means of different image classification 
architectures. Pose estimation is used to define the regions of interest 
prior to PPE detection. This strategy differs from ours, which uses pose 
estimation to assign the PPE items to the right worker using distances 
from PPE to related body parts. A similar approach is proposed in Xiong 
et al. [7], which also uses the location of the estimated body parts 
to search for the corresponding PPE items using specific classifiers for 
each body part. Although a prior location of body parts can restrict the 
area to look for the PPE, the dependency on a right pose estimation can 
lead to missing PPE items. Kim et al. [25] estimate the 3D pose from 
2D images by using a single camera and a virtual model for the 2D–
3D annotation. The work in [26] proposes a deep learning framework 
to extract the worker’s keypoints, track multiple workers, and analyze 
their activity. In [27], the authors make use of decision trees to detect 
different helmets and gears and classify poses into several classes. 
Several approaches to pose estimation use non-visual systems, which 
mainly rely on the workers wearing sensors and collecting the position 
together with certain parameters, such speed, direction, etc. (see, for 
instance, [28]). Alternatively, depth cameras provide some valuable 
information for pose estimation [29]. However, both options require 
specialized equipment that is not commonly available or practical 
for use on construction sites or in shipyards. In addition, the limited 
shooting distance of depth cameras and the sensitivity to certain con-
ditions restrict their use in outdoor scenes. A comprehensive analysis 
of safety conditions could also include the estimation of the pose of the 
construction equipment and machines, such as in [30]. A vision-based 
collision warning system is presented in [31], which warns of potential 
risks using an automated 3D position estimation of each worker with 
monocular vision.

Different versions of the YOLO (You Only Look Once) model are 
used in a significant proportion of these works. Nath et al. [8] present 
a comparison of three different strategies to analyze image and video 
sequences in real time and determine whether workers are wearing a 
hard hat or a vest. All three approaches rely on YOLO-v3, but differ 
in the way workers, hats and vests are detected. With the first method, 
the detection of a worker and their PPE is handled as two distinct tasks, 
and after both are detected, the system tries to associate the PPE with 
the corresponding worker. The second approach uses a single object 
3 
detector to identify workers and PPE, and classifies workers according 
to the PPE they are wearing. Instead of detecting workers and PPE 
separately, the model identifies and categorizes them together in one 
step, enabling faster and more integrated detection. The third one first 
detects workers and then focuses on the areas around the workers (a 
cropped region of the image) to detect the PPE they are wearing. After 
identifying a worker, the system zooms into that region to classify the 
PPE using a multiclass classifier, distinguishing between different types 
of safety gear.

Some works perform comparisons between different models or add 
certain modifications to improve their efficacy. For instance, Akinse-
moyin et al. [32] compare faster R-CNN and YOLOv3 when applied 
to images acquired with unmanned aerial systems in order to detect 
hard hats in construction sites. Nain et al. [33] tested the accuracy of 
three deep learning algorithms (YOLO v4, v5, and YOLACT++) in the 
detection of hard hats. Zhang et al. [34] perform certain modifications 
in the YOLOv5s-Btri model to improve the detection of helmets and 
reduce the parameters.

Concerning the datasets available for testing the different appro
aches, [22,32] use a publicly available dataset3 to determine whether 
the workers are wearing a hard hat. The work in [18] copes with a 
wide variety of elements,4 and Wang et al. [17] have made their dataset 
available5 to compare their results in the identification of different 
elements of the attire. However, most of those images are not as 
challenging as the scenarios we deal with because of the proximity of 
the workers to the camera. The scenario most similar to ours is used 
in [8], with a dataset which includes images of construction sites with 
workers at a relatively greater distance from the camera.6

Table  1 summarizes the main features of some of the most relevant 
works, which will be used for comparison in the following sections. 
As mentioned above, Nath et al. [8] include three alternatives. In the 
first one, workers and PPE items are detected independently and linked 
afterwards. The second option performs a common object detection 
for workers and PPE. Finally, in the third alternative, workers are 
detected first and PPE items are searched for around them. The latter 
two approaches share some aspects with our proposal, but they lack 
mechanisms to successfully decide when the worker-PPE matching is 
ambiguous. We have included a collision detection and a duplicate 
removal stage that benefits our results in those cases. Additionally, pose 
estimation is used to improve the accuracy of the assignment of equip-
ment to workers. On the other hand, Xiong et al. [7] and Vukicevic 
et al. [6] rely on pose estimation to search for the equipment around the 
corresponding body parts. This limits the possibilities of successfully 
finding PPE items. Finally, Cheng et al. [9] deal with several cameras 
and track workers with a re-identification process, whereas we work 

3 https://public.roboflow.com/object-detection/hard-hat-workers.
4 https://github.com/msdbarati/PPE-Detection.
5 https://github.com/ZijianWang-ZW/PPE_detection.
6 https://universe.roboflow.com/ppe-orxtt/ppe-u7jtr/dataset/9.

https://public.roboflow.com/object-detection/hard-hat-workers
https://github.com/msdbarati/PPE-Detection
https://github.com/ZijianWang-ZW/PPE_detection
https://universe.roboflow.com/ppe-orxtt/ppe-u7jtr/dataset/9
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Fig. 1.  General flow diagram for the detection and matching of workers and equipment.
with single-camera systems. With the additional stages that we have 
introduced and the new strategy in the search and assignment of PPE 
items, the results are more precise and trustworthy in those challenging 
situations where the detection and the correct matching are especially 
difficult.

3. Proposed framework for worker and equipment detection

In order to provide useful information for assessing the risks as-
sociated with a scene, it is essential not only to detect workers and 
different items of PPE, but also to match the detected equipment with 
the corresponding worker. This process involves addressing challeng-
ing scenarios which include very close workers, ambiguities in the 
assignment of a PPE item to a worker, and partial occlusions.

Fig.  1 presents a general flow diagram that illustrates the different 
stages, as well as their inputs and outputs. First, workers are detected 
in the original scene, and cropped images are extracted around each 
worker for further analysis (step 1 in the diagram). Then each cropped 
image is processed in two parallel pathways. On the one hand, the dif-
ferent elements of the PPE are identified within the cropped image (step 
2a). This includes helmets, vests, gloves, safety boots, and protective 
suits. Within each image, the different elements of the attire are labeled 
4 
according to their categories (for clarity, only helmets and vests are 
depicted in the diagram). Since workers may be in close proximity and 
the corresponding cropped images may overlap, a duplicate removal 
stage is necessary to ensure that the detected items are not considered 
in more than one cropped image.

On the other hand, the pose of the worker is analyzed by extracting 
a skeletal representation of the position of several body parts (step 2b). 
Note that steps 2a and 2b are independent and can be performed in 
parallel. Finally, a matching process is performed to associate the de-
tected workers with their respective equipment (step 3). Although the 
risk associated with the pose itself is not considered, it facilitates a more 
accurate matching by aligning PPE elements with the corresponding 
body parts.

This flexible framework is designed in such a way that each block 
can be replaced with an alternative that performs the same task, using 
the same inputs and outputs, but employing a different technique. In 
the following subsections, each stage will be described in greater detail.

3.1. Worker detection and generation of cropped images

For people detection (step 1 in Fig.  1), any object detector trained to 
identify individuals can be utilized (e.g., YOLO or InternImage). In this 
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Fig. 2. Results for worker and equipment detection in large distance scenarios with shadows and occlusions. The following color code has been used to indicate the detection 
categories:  worker  helmet  vest  gloves  safety boots  protective suit.
 
 

 

 
 
 
 

 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

study, we implemented the proposed framework using InternImage-L,
trained on the COCO dataset. Our experiments indicate that this is the
most suitable option due to its ability to capture long-range dependen-
cies and adapt to complex spatial variations through its large-kernel
convolution and deformable attention mechanisms.

As previously mentioned, for each detected worker, a section of the
image is cropped around them, ensuring full inclusion. To optimize PPE
detection, these crops are interpolated to a uniform size of 192 × 192
pixels. This process enhances the visibility of small or distant PPE items
by increasing their resolution, making their features more distinguish-
able to the detection model. Additionally, in scenarios involving partial
occlusions — whether between workers or with surrounding objects —
interpolation helps to preserve visible details, improving the likelihood
of detecting PPE components even when they are only partially visible.
While interpolation does not introduce new information, it ensures
that PPE elements remain within an optimal scale range for feature
extraction, benefiting models that are sensitive to object size variations
and occlusions.

When the aspect ratio does not match the target size, the remaining
space is filled with gray pixels to maintain a consistent input format.
Alternatively, zero-padding or edge replication can be used, depending
on the model’s preprocessing requirements.

The right identification of workers is crucial for the subsequent
stages. A false negative in the detection of a worker results in a
missing cropped image and overlooking the possible PPE items. On the
other hand, a false positive (i.e., identifying a worker where no one is
present) could lead to triggering a warning for not complying with the
required regulations (a false alarm). Finally, overlapping and occlusions
must be cautiously tackled to assign PPE items to the right workers.
These aspects will be considered in the following sections.

3.2. Equipment identification with collision detection and duplicate removal

In the proposed framework, an object detector is used to extract PPE
from each cropped image (step 2a in Fig.  1). Specifically, we employ
5 
YOLOv7 [35] and identify five categories: helmets, vests, gloves, safety
boots, and protective suits.

This process may result in the detection of duplicates of some items,
when they are visible in more than one subimage, thus requiring the
removal of the duplicates. Fig.  2 illustrates these outcomes, where
the cropped images generated for different workers overlap, and some
workers are occluded by other workers, scaffolding, or other elements.
The left side of the figure displays the original images alongside the
inferred detection, while the right side provides a detailed view of
regions where multiple workers and their equipment are detected. The
top image depicts five workers (white rectangles) who are very close
to each other. Notably, the two on the far left are particularly nearby,
which may result in their helmets (green rectangles) being detected in
more than one cropped image. A similar situation is observed with the
workers in the bottom image, where shadows further complicate the
identification process.

To tackle this issue, we apply non-maximum suppression (NMS) to
the detected equipment across all cropped images, after transforming
the detected elements back to their original dimensions and positions
in the image. By utilizing the NMS technique, we filter the equipment
detected in various subimages as follows: The coordinates of the in-
stances detected in the different cropped images are recalculated with
respect to the entire image. When two instances of the same type
overlap beyond a certain threshold (i.e., their Intersection over Union,
or IoU, is sufficiently high), only that with the highest confidence score
(as provided by the detection model) is retained, while the others are
discarded. In our experiments, this value is set to 0.65. This way, the
attire contained in more than one cropped image (as in the lower
row of Fig.  2) is not detected multiple times. As observed, the main
issue regarding PPE identification is related to occlusions and shadows,
which may result in missing PPE items or ambiguous ownership. How-
ever, the collision detection and duplicate removal stage helps dealing
with overlapping cropped images and the pose estimation described
below improves the efficacy of worker-PPE matching. Section 5 shows
more experimental results when the method is applied to important
challenges.
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3.3. Pose extraction

Pose estimation is performed using ViTPose [36], specifically
ViTPose-B trained on the COCO dataset (step 2b in Fig.  1). This method 
generates a skeletal representation of the workers consisting of edges 
that connect vertices, which correspond to eyes, ears, nose, shoulders, 
elbows, wrists, hips, knees, and ankles. It provides valuable information 
for accurately matching workers with their respective equipment, as 
described below. In our experiments, we quantitative confirm that 
ViTPose is the best option for our framework.

RRIt is important to note that pose is used to increase the accuracy 
of the matching between a worker and the PPE items they wear. 
However, in our proposal this matching is carried out even if pose is 
missing. In fact, in those cases where pose cannot be extracted, the PPE 
item is assigned to the worker whose cropped image contained the item. 
In case it overlaps with another cropped image, it is associated with the 
worker whose bounding box center is closer to the item. This approach 
differs from that in [6] or [7], which focus attention around pose 
keypoints and rely on pose estimation for a proper PPE identification.

3.4. Worker-equipment matching

Workers often collaborate on tasks in industrial scenarios, resulting 
in close proximity and frequent partial or total occlusions. In Sec-
tion 3.2, we described the process of removing duplicate equipment 
detected across different cropped images. However, an additional pro-
cess is required to accurately identify the worker who is wearing the 
PPE item. This challenge is addressed by integrating the PPE detection 
from each worker’s subimage with their estimated pose (step 3 in Fig. 
1).

Since each item of the PPE must be worn in a specific part of the 
body, pose information helps assign each item to the corresponding 
worker by identifying the body part where it should be located. By inte-
grating this pose information with the detected PPE, we can effectively 
match each worker with their appropriate equipment and assess the 
compliance with HSE regulations in a more effective way. This step is 
illustrated in Fig.  3.

To assign ownership of each PPE item, our method calculates the 
distance from the center of the PPE item’s bounding box to the key-
points of the corresponding body part, allowing for association with 
the closest relevant body part (e.g., a helmet with the head). This 
calculation is only performed for overlapping workers to optimize 
processing time. Subsequently, the PPE is assigned to the worker whose 
pose keypoints are nearest to the center of the item, ensuring unique 
assignment to a single worker.

In particular, up to 13 of the keypoints extracted in the pose estima-
tion are used for the worker-PPE matching as follows: The central point 
of the two ears, the two eyes and the nose is used to identify the head 
and match it with the helmet. The center of the two shoulders and two 
hips is used for the vest and the protective suit. Finally, the wrists and 
the ankles are used for the gloves and the boots, respectively.

As mentioned above, in [6,7], pose estimation is used to define 
the regions of interest prior to PPE detection, whereas we use pose 
estimation to assign the PPE items to the right worker once they have 
been detected using distances from PPE to related body parts.

For cases where a PPE item does not directly align with any specific 
pose keypoint, it is assigned to the worker whose bounding box center is 
closest to the item, providing robust attribution even in complex scenes. 
While our approach ensures an important accuracy in PPE association, 
it does not always guarantee precise placement in some extreme cases 
(e.g., helmets may be near the head but not always perfectly positioned 
on it). Figs.  4 and 5 illustrate scenarios where workers are detected 
at medium and long distance from the camera, or when they are only 
partially visible. In Fig.  4, a worker and his helmet are identified at the 
bottom (only a portion of his head is visible, making PPE assignment 
challenging), yet the helmet is still correctly assigned. Meanwhile, the 
6 
Fig. 3. Worker-PPE matching: in each cropped image (top middle), PPE is detected 
(top left) and pose is estimated (top right). The distance from the center of each PPE 
element (colored rhombi) to the corresponding body part (colored circles) is used for 
worker-PPE matching (bottom).

other two workers and their equipment are properly detected. In Fig.  5, 
workers and their attire are correctly detected and matched, including 
helmets, vests, and gloves, even in blurred sections of the image in a 
long-distance scene.

4. Experimental setup

In this section, we describe the experimental setup used to evaluate 
the proposed framework, detailing the characteristics of the datasets, 
as well as the metrics employed for performance assessment.

4.1. Collected dataset from PPE public repositories (training and validation 
dataset)

Based on the dataset published in [17],7 we gathered, cleaned and 
combined multiple publicly available datasets with different classes in 
the field of PPE equipment.891011121314

Afterward, 13,589 images were manually labeled to achieve a co-
herent distribution of PPE items and ensure consistent labeling across 
all categories. These images were split into training (10,207 samples) 
and validation (3380 samples) subsets, maintaining the original pro-
portion of instances across each category. Additionally, 2198 worker 
samples from the Zamakona shipyard were added, with 1946 allocated 
to the training subset and 252 to the validation subset. Overall, the 
training subset included 12,153 individual worker images, while the 
validation subset contained 3632, each representing a single worker.

In Fig.  6, the number of instances per class in the collected dataset 
is shown. Although our dataset exhibits an unbalanced distribution 
of classes, we maintained this distribution in both the training and 

7 https://github.com/ZijianWang-ZW/PPE_detection.
8 https://universe.roboflow.com/roboflow-100/construction-safety-gsnvb.
9 https://universe.roboflow.com/nom/epi_detector.
10 https://universe.roboflow.com/detection-kd8gd/fm4.
11 https://universe.roboflow.com/temp04/ppe-8d778.
12 https://universe.roboflow.com/ai-project-yolo/ppe-detection-q897z.
13 https://universe.roboflow.com/universe-datasets/hard-hat-universe-
0dy7t/dataset/6.
14 https://universe.roboflow.com/helmet-tf/safety-helmet-4mhdt.

https://github.com/ZijianWang-ZW/PPE_detection
https://universe.roboflow.com/roboflow-100/construction-safety-gsnvb
https://universe.roboflow.com/nom/epi_detector
https://universe.roboflow.com/detection-kd8gd/fm4
https://universe.roboflow.com/temp04/ppe-8d778
https://universe.roboflow.com/ai-project-yolo/ppe-detection-q897z
https://universe.roboflow.com/universe-datasets/hard-hat-universe-0dy7t/dataset/6
https://universe.roboflow.com/universe-datasets/hard-hat-universe-0dy7t/dataset/6
https://universe.roboflow.com/helmet-tf/safety-helmet-4mhdt
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Fig. 4. Results for worker and PPE detection and matching in challenging scenarios: medium distance and minimally visible worker. Whole scene (left) and enlarged areas (right).
Fig. 5. Results for worker and PPE detection and matching in challenging scenarios: long distance. Whole scene (top) and enlarged areas (bottom).
validation processes. This approach was adopted to reflect the real-
world scenario as accurately as possible and to ensure a consistent 
evaluation of the model’s performance under realistic conditions (the 
imbalance arises from the different frequency in the images of some 
elements, such as safety boots and protective suits, when compared to 
helmets).

4.2. Dataset for workplace hazard prevention in a shipyard (Zamakona 
evaluation dataset)

In order to assess the effectiveness of the proposed framework, a 
benchmark dataset was created using high-resolution 1080p images 
captured at the Repnaval shipyard of Zamakona, located in the port of 
Las Palmas de Gran Canaria, Spain. The dataset consists of 227 images 
collected over several months using a Pan–Tilt–Zoom camera mounted 
on the rooftop of the shipyard’s office building. With the intention of 
testing the model in especially difficult scenarios which highlight the 
improvements achieved, all images in the test dataset contain at least 
two overlapping bounding boxes, i.e., at least two workers are close 
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to each other. In many cases, the number of nearby workers is higher. 
In addition, the images were captured from various perspectives and 
at different times of day, ensuring a diverse range of conditions in 
our dataset. This ensures that the difficulties associated with low light, 
shadows and poor visibility are also comprehensively considered.

Some samples are depicted in Fig.  7, showing the variety of lighting 
conditions, camera distances, and environmental scenarios (e.g., shad-
ows, sunny or cloudy days) present in the collection. This diversity in 
angles and circumstances provides a comprehensive representation of 
the dataset and is crucial for conducting a robust evaluation of the 
proposed method across different real-world scenarios.

These images were manually labeled with the bounding boxes of the 
workers and visitors, along with the PPE classes stated before. In total, 
1277 workers were labeled inside these images. In Fig.  8, the number 
of instances per class of the PPE associated to these workers is shown.

4.3. Performance evaluation metrics

The most commonly used performance metrics in this type of prob-
lems are precision (also known as positive predictive value) and recall 
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Fig. 6. Number of instances of each class in the collected dataset: training, validation, and total.

Fig. 7. Sample images from the Repnaval Zamakona dataset: eight diverse viewpoints that encompass various shipyard areas with different environmental conditions.
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Fig. 8. Distribution of instances per class in the Zamakona evaluation dataset.
Table 2
Computation of precision and recall in multilabel classification. 𝑁 : number of classes; 
𝑀 : number of instances. TP𝑖, FP𝑖, and FN𝑖: true positives, false positives, and false 
negatives for class 𝑖, respectively. Precision𝑖, Recall𝑖: precision and recall for class 𝑖. S𝑖: 
number of actual instances (support) for class 𝑖. TP𝑖,𝑗 , FP𝑖,𝑗 , and FN𝑖,𝑗 : true positives, 
false positives, and false negatives for class 𝑖 in instance 𝑗.
 Precision Recall  

 Micro
∑𝑁

𝑖=1 TP𝑖
∑𝑁

𝑖=1(TP𝑖 + FP𝑖)

∑𝑁
𝑖=1 TP𝑖

∑𝑁
𝑖=1(TP𝑖 + FN𝑖)

 

 Macro
1
𝑁

∑𝑁
𝑖=1 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

1
𝑁

∑𝑁
𝑖=1 𝑅𝑒𝑐𝑎𝑙𝑙𝑖  

 = 1
𝑁

∑𝑁
𝑖=1

TP𝑖
TP𝑖 + FP𝑖

= 1
𝑁

∑𝑁
𝑖=1

TP𝑖
TP𝑖 + FN𝑖

 

 Weighted
∑𝑁

𝑖=1 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖
∑𝑁

𝑖=1 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖

∑𝑁
𝑖=1 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

∑𝑁
𝑖=1 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖

 

 Sample
1
𝑀

∑𝑀
𝑗=1 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑗

1
𝑀

∑𝑀
𝑗=1 𝑅𝑒𝑐𝑎𝑙𝑙𝑗  

 = 1
𝑀

∑𝑀
𝑗=1

∑𝑁
𝑖=1 TP𝑖,𝑗

∑𝑁
𝑖=1 (TP𝑖,𝑗+FP𝑖,𝑗 )

= 1
𝑀

∑𝑀
𝑗=1

∑𝑁
𝑖=1 TP𝑖,𝑗

∑𝑁
𝑖=1 (TP𝑖,𝑗+FN𝑖,𝑗 )

 

(also known as sensitivity). These metrics are derived from the counts 
of true positives (TP), false positives (FP), and false negatives (FN), and 
can be calculated as shown in Eq. (1). Note the 𝑇𝑃 + 𝐹𝑃  represents 
the total number of retrieved instances, while 𝑇𝑃 + 𝐹𝑁 is the total 
number of relevant instances. Therefore, precision reflects how specific 
the method is, while recall indicates how sensitive it is. 

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(1)

In classification tasks, it is common to combine both metrics in a 
harmonic mean called 𝐹1 score, as in Eq. (2). 

F1 score = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(2)

4.4. Multiclass combined evaluation

In single-label classification, a retrieved sample can be either correct 
or incorrect. However, in multi-label classification, a sample can also be 
partially correct (i.e., some elements of the PPE may be properly iden-
tified, while others are not). We could use a One-vs-Rest approach for 
each class to evaluate performance independently. However, to provide 
a more comprehensive assessment and address the unbalanced number 
of class instances, we have also evaluated performance using several 
averaging methods: micro, macro, weighted, and sample averages.

The expressions to calculate the average using these approaches are 
shown in Tables  2 (for precision and recall) and 3 (for F1-score). Micro-
averaging aggregates all 𝑇𝑃 , 𝐹𝑃  and 𝐹𝑁 , across all classes to produce 
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Table 3
Computation of F1-score in multilabel classification. 𝑁 : number of classes; 𝑀 : number 
of instances. TP𝑖, FP𝑖, and FN𝑖: true positives, false positives, and false negatives for 
class 𝑖, respectively. Precision𝑖, Recall𝑖, and F1𝑖: precision and recall for class 𝑖. S𝑖: 
number of actual instances (support) for class 𝑖. TP𝑖,𝑗 , FP𝑖,𝑗 , and FN𝑖,𝑗 : true positives, 
false positives, and false negatives for class 𝑖 in instance 𝑗.
 F1-score  
 Micro 2 ⋅Micro-Precision ⋅Micro-Recall

Micro-Precision +Micro-Recall  

 Macro 1
𝑁

∑𝑁
𝑖=1

2 ⋅ Precision𝑖 ⋅ Recall𝑖
Precision𝑖 + Recall𝑖

 

 Weighted
∑𝑁

𝑖=1 Support𝑖 ⋅ F1𝑖
∑𝑁

𝑖=1 Support𝑖
 

 Sample 1
𝑀

∑𝑀
𝑗=1

2 ⋅ Precision𝑗 ⋅ Recall𝑗
Precision𝑗 + Recall𝑗

 

global values. This approach treats all retrieved elements (both true 
and false) and all non-retrieved actual elements equally, regardless of 
their class. Macro-averaging, in turn, calculates the metrics for each 
class individually and then computes the average of these metrics. This 
method ensures that each class contributes equally to the final results, 
regardless of the number of instances in the dataset or the number 
of retrieved elements. Weighted averaging considers the number of 
instances for each class, known as the class’s support (S). The metric 
for each class is weighted by its support, thus meaning that classes 
with more occurrences have a higher influence on the final metric. 
Finally, sample averaging computes the metrics for each sample across 
the different classes, and then averages the values across all samples. 
Consequently, this approach gives equal contribution to all samples, 
regardless of the number of classes present in them.

These metrics should be used in conjunction, especially in unbal-
anced datasets like ours. While micro-averaging may downplay the 
impact of less-represented classes, macro-averaging can exaggerate 
poor performance in those classes. Weighted averaging aims to strike 
a balance by considering the number of actual instances, but does 
not fully address class imbalance. Finally, sample averaging provides 
insight into how the model performs on individual samples, regardless 
of the number of classes which are contained.

5. Experimental results

In this section, the main results are presented and discussed. First, 
the training method and its configuration are explained. Afterwards, 
the method is compared with state-of-art research, testing different 
combinations within the general framework. Finally, an ablation study 
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Fig. 9. Confusion matrix illustrating the classification performance across the PPE classes.
is conducted to show the improvements provided by the different stages 
of the proposed framework.

The framework we have presented consists of four main stages, 
namely worker detection, PPE detection, pose estimation, and worker-
PPE matching. For worker detection, we work with 192𝑥192 images, 
and the configuration can be changed to use a different interpolation 
method or to increase/decrease the margins of the bounding boxes. 
However, the probability of overlapping increases if margins are large, 
so that they must be cautiously adjusted. For both worker and PPE 
detection, the threshold for the confidence of the detection is set to 
0.5. If this threshold is increased, fewer elements are identified and, if 
it is reduced, the identified ones are less reliable. Therefore, a balance 
must be achieved. Regarding PPE identification, we work with five 
categories (helmet, vest, gloves, boots and protective suits). Using too 
many categories would drastically increase the possible configurations 
of present/absent PPE items, so that the most significant ones must be 
chosen. In this stage, the overlapping for duplicate removal must be 
controlled, and this requires a threshold for the IoU (𝜃𝑜, which has been 
set to 0.65 in our experiments). Adjusting this value allows balancing 
the duplicate removal with the possibility of removing an actual origi-
nal instance. Pose estimation identifies 17 body parts, although, in our 
case, 13 are considered, since they are the relevant ones for the PPE 
items we work with. In fact, the worker-PPE matching deals with 6
body parts (head for the helmet, chest for the vest and protective suit, 
hands for the gloves, and feet for the boots, each one estimated from 
a set of pose keypoints, as described in Section 3.4) and calculates the 
distance from PPE items to the corresponding body part.

The experiments were carried out in a computer with the follow-
ing features: Intel® Xeon® Gold 6230 Processor @2.10 GHz, GPU 
RTX 3060 cores 3584 @1.78 GHz 12 GB GDDR6, RAM 62 GB DDR4 
@2400MH.
10 
5.1. Results for the different classes in the PPE detector

To implement the proposed framework, we trained a Yolov7, vari-
ant e6, for the PPE detection step, using the dataset described in 
Section 4.1 for training and validation. Regarding the results in the 
validation set, Fig.  9 illustrates the confusion matrix for the five PPE 
classes, indicating the proportion of instances of a class which are 
assigned each label or interpreted as background. As observed, helmets 
and vests are well identified in most cases with correct predictions of 
96% and 89%, respectively. However, approximately a quarter of the 
protective suits and almost half of the gloves and safety boots are not 
identified. This was to be expected, due to the challenges posed by their 
sizes, colors and positions.

Fig.  10 presents the precision–recall curve, plotting the metrics for 
various score cutoffs, and illustrating the trade-off between precision 
and recall. As observed, the area under the curve is quite large for both 
helmets and vests (0.970 and 0.888, respectively). This indicates that a 
high precision can be achieved for these classes without significantly 
compromising recall, and vice versa. For protective suits, increasing 
recall beyond 60% would require a moderate reduction in precision. 
Finally, gloves and safety boots pose the greatest challenge, with only 
modest levels of precision and recall achievable.

Table  4 provides detailed values of precision and recall, as well 
as the average precision (AP) for each of the 5 classes and for the 
combination of all of them. In this table, AP50 indicates the average 
precision when the threshold IoU (Intersection over Union between the 
predicted and the actual instances) is set to 50%, so that a result is 
considered a true positive when the predicted and the actual instances 
overlap in at least a half. On the other hand, the mean average precision 
(mAP, also denoted as AP@[.50;.05:.95], or simply AP) reflects the 
mean of the average precision across IoU thresholds ranging from 50% 
to 95% in 5% increments.
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Fig. 10. Precision–Recall curve obtained from the evaluation in the Zamakona dataset.
Table 4
Results for the validation dataset (3632 images): precision (P), recall (R), average 
precision for threshold IoU 50% (AP50), and mean of average precision for range of 
thresholds 50%–95% (AP).
 Class Labels P R AP50 AP  
 All 6503 0.735 0.684 0.722 0.445 
 Helmet 3515 0.928 0.946 0.970 0.697 
 Vest 976 0.829 0.874 0.888 0.552 
 Gloves 1195 0.614 0.449 0.516 0.264 
 Safety boots 660 0.643 0.479 0.547 0.271 
 Protective suit 157 0.662 0.669 0.689 0.441 

5.2. Evaluation on the Zamakona dataset

Table  5 contains the metrics resulting from the evaluation of our 
method in terms of attribute assignation as a multi-label task. When 
considering the different elements of the PPE individually, the highest 
precision is achieved for helmets (93.16%) and vests (82.27%). Al-
though not as high, precision is moderately good for protective suits 
and safety boots, while it is lower for gloves. Concerning recall, it is 
satisfactory for safety boots and helmets (over 70%), and moderate for 
vests, protective suits and gloves. Note that recall is affected by the 
number of non-detected workers, as each element in their equipment 
will count as a false negative for the corresponding class. This results 
in higher F1-scores for helmets and vests, moderate values for safety 
boots and protective suits, and lower figures for gloves.

When combining all instances into a single metric, the fact that 
helmets are the most frequent class, while gloves are the least common 
one, penalizes the macro average and the sample average. On the 
contrary, the micro and the weighted averages are improved (approxi-
mately 80% precision, 70% recall, and 75% F1-score).

5.3. Quantitative comparison with state-of-the-art methods

In this section, we present a quantitative comparison of the pro-
posed framework with the approaches introduced by Nath et al. [8] 
and our own implementation from the one presented in Xiong et al. [7]. 
To maintain clarity, we will refer to these methods simply as Nath and 
Xiong throughout the rest of the paper.

Nath proposed three strategies trained on the Pictor dataset, labeled 
A1, A2, and A3. The last two, Nath-A2 and Nath-A3, share similarities 
with our framework and are thus suitable for comparison. Nath-A2 
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Table 5
Results for worker multilabel assignation on our benchmark dataset. Individual metrics 
for each PPE class and aggregated metrics using different averaging strategies.
 Class Metrics

 Precision Recall F1-score support 
 Gloves 39.32 52.27 44.87 88  
 Helmet 93.16 73.06 81.89 1006  
 Protective suit 63.64 62.10 62.86 248  
 Safety boots 59.32 83.33 69.31 210  
 Vest 82.27 68.84 74.96 337  
 Accumulated average:  
 Micro avg. 77.80 71.04 74.27 1889  
 Macro avg. 67.54 67.92 66.78 1889  
 Weighted avg. 81.07 71.04 75.03 1889  
 Sample avg. 53.66 57.12 53.71 1889  

employs a single-stage detection model designed to simultaneously 
identify workers and classify them based on their PPE compliance. Each 
detected worker is categorized into one of four groups: without PPE, 
with a helmet, with a vest, or with both a helmet and a vest. Nath-
A3, on the other hand, follows a two-stage approach. First, a detector 
identifies workers, and then a multi-class classifier assigns them to the 
same PPE categories as in Nath-A2.

Additionally, Xiong introduces a PPE compliance monitoring system 
that, like our approach, uses pose estimation to guide PPE detections. 
However, PPE items are searched around the corresponding body part. 
Thus, Xiong’s approach serves as a useful benchmark for comparing 
strategies in PPE detection and assignment.

Tables  6 and 7 present the metrics comparing the worker detec-
tor that we use (InternImage), against the YOLOv3-based approaches 
proposed by Nath et al. [8] (A2 and A3). In their dataset (Pictor), 
InternImage outperforms both YOLOv3-based models across all metrics, 
achieving a Precision of 92.80%, Recall of 83.18%, and an F1-score of 
87.73%. In contrast, the best-performing YOLOv3-based model (Nath 
A3) reaches an F1-score of 82.83%, with lower precision and recall 
values. This improvement highlights the enhanced detection capabili-
ties of InternImage, particularly in accurately identifying workers while 
maintaining a high recall rate. The difference is even more pronounced 
in the Zamakona dataset, where the YOLOv3-based models struggle 
significantly. Nath A2 and A3 exhibit low recall values (35.71% and 
40.09%), leading to poor F1-scores (45.83% and 49.47%), indicating 
frequent missed detections. In contrast, InternImage achieves a much 
higher recall (76.74%) and an F1-score of 85.33%, demonstrating its 
robustness across different datasets.
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Table 6
Worker detection metrics in the Pictor dataset.
 Model Precision Recall F1-score 
 Nath A2 (YOLOv3) 87.70 77.19 82.11  
 Nath A3 (YOLOv3) 86.47 79.49 82.83  
 Ours (InternImage) 92.80 83.18 87.73  

Table 7
Worker detection metrics in the Zamakona dataset.
 Model Precision Recall F1-score 
 Nath A2 (YOLOv3) 63.96 35.71 45.83  
 Nath A3 (YOLOv3) 64.56 40.09 49.47  
 Ours (InternImage) 96.08 76.74 85.33  

This difference highlights the advancements in object detection 
models, training techniques, and datasets over the years, leading to 
significantly better results for modern top-performing models compared 
to older architectures like YOLOv3. The performance of the worker 
detector is crucial for the overall efficacy of both PPE detection and 
assignment tasks.

Regarding PPE detection and assignment, we also conducted a com-
parison against Xiong and Nath A2 and A3, evaluating their different 
variants on both the Pictor dataset and the Zamakona dataset. Although 
our framework is capable of detecting five different PPE categories, 
the other approaches are limited to detecting only helmets and vests. 
Therefore, the extracted metrics for this comparison focus exclusively 
on these two categories.

As previously mentioned, worker detection plays a crucial role in 
the effectiveness of both methods. The results indicate that the original 
version of Nath’s approach performs worse than our method on its own 
dataset (Pictor dataset), despite our method not being trained on it, 
and performs significantly worse on the Zamakona dataset. To ensure a 
fairer comparison of PPE detection and worker-PPE matching, we also 
tested their method after replacing YOLOv3 with InternImage as the 
worker detector. This substitution resulted in a significant improvement 
in performance of their original proposal on both datasets.

Table  8 presents the combined performance metrics when applying 
the state-of-the-art models and our proposed framework to our dataset 
and the Pictor dataset. As observed, our method outperforms both Nath 
and Xiong by a significant margin across all metrics in the Zamakona 
dataset. The precision, recall, and F1-score of our method exceed 
the best results obtained with the others approaches in all averaging 
options, with some improvements surpassing 20%.

On the other hand, when tested on the Pictor dataset, our method 
achieves comparable results. The best results for Nath’s models on their 
own dataset exceed our method by less than 5% in micro, weighted, and 
sample averages. However, while their method achieves a higher macro 
average precision, this comes at the expense of a lower recall, with 
our method surpassing theirs by more than 5% in recall. Additionally, 
our method attains slightly higher precision in the weighted average. 
Overall, our proposal consistently outperforms the Xiong approach, 
particularly by normally achieving higher recall rates, which in turn 
leads to a better F1 score. Despite the Pictor dataset containing images 
with closer distances and being trained for only two PPE categories, 
our general-purpose framework delivers competitive results.

Finally, in Table  9 we compare the mean inference times of the PPE 
detection models on the Zamakona evaluation dataset. For a fair com-
parison, we have used the models trained on InternImage for Nath A3. 
Nath-A2 achieves the fastest time at 0.124 s per image due to its simpler 
architecture, which integrates worker detection and PPE classification 
into a single step, reducing computational demands, but sacrificing fea-
ture extraction capabilities and providing poor results. Nath-A3 models 
strongly enhance metrics compared to Nath-A2, thanks to the superior 
feature representation provided by their deeper architectures, though 
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this comes at the cost of longer inference times. The Xception variant 
is slightly faster than ResNet, benefiting from depthwise separable con-
volutions that maintain feature quality while reducing computational 
load, thereby improving performance in complex scenarios.

Xiong’s method has a longer processing time (0.964 s) compared to 
the other approaches due to its multi-stage pipeline, which includes 
worker detection, pose estimation, and separate classifiers for PPE 
detection. While this strategy enhances PPE localization accuracy, it 
also increases computational overhead. The sequential processing of 
worker detection followed by region-of-interest extraction based on 
estimated body parts before PPE classification contributes to this time. 
This reliance on pose estimation adds complexity and affects overall 
detection speed, making it slower than the other evaluated methods.

In contrast, our framework operates at 0.878 s per image while 
incorporating additional steps such as collision detection and duplicate 
removal to refine PPE assignment. Unlike Xiong, our method does not 
rely on pose estimation to define PPE search areas; instead, it directly 
associates detected PPE with the nearest worker while leveraging pose 
information for final matching. This process reduces computational 
overhead. Additionally, our framework balances efficiency by inte-
grating pose estimation in a way that enhances detection without 
introducing excessive delays.

These results demonstrate a trade-off between inference speed and 
detection accuracy. While Nath-A2 offers faster processing, its sim-
plified architecture compromises precision. Conversely, deeper models 
such as Nath-A3 and our framework provide significantly improved de-
tection and matching performance. Our method, in particular, demon-
strates important accuracy in real-world construction site environ-
ments, effectively covering broad areas while maintaining competitive 
inference speed suitable for practical deployment.

5.4. Qualitative comparison with state-of-the-art methods

In this section, we present a qualitative comparison of the pro-
posed method against Xiong [7] and the enhanced implementation of 
Nath [8]. We aim to evaluate the strengths and limitations of each PPE 
detection framework across different conditions, particularly focusing 
on occlusions, low illumination, and non-compliance scenarios. This 
comparative analysis provides insights into the effectiveness of each 
method and identifies areas for further improvement in PPE detection.

Besides, in order to further validate the generalizability of our 
framework, we extend our evaluation beyond the Zamakona dataset 
by testing on additional real-world construction site images. These 
images include new, previously unseen backgrounds and environmental 
conditions, ensuring that our model is not biased toward a specific 
dataset. The evaluation includes images from the Nelson Mandela dock 
in the Port of Las Palmas de Gran Canaria, where dock extension work 
is underway, as well as real construction sites in Gran Canaria and 
publicly available images from Shutterstock.15 These datasets were cho-
sen to introduce greater variability in construction environments, such 
as different lighting conditions, worker densities, and PPE compliance 
levels.

In each figure, we facilitate visual analysis by using a color-coded 
bounding box system to differentiate PPE compliance levels. A white 
bounding box indicates a detected worker without any PPE. A green 
bounding box indicates a worker wearing a helmet, a red bounding box 
represents a worker wearing a vest, and a yellow bounding box denotes 
a worker equipped with both a helmet and a vest. This visualization 
scheme provides an intuitive representation of PPE compliance status 
across various scenarios. Notice that our framework is capable of 
detecting a broader range of PPE categories compared to the other 
methods. However, for this evaluation, we focus on the main PPE 
classes detected by all three approaches to ensure a fair and consistent 
comparison.

15 https://www.shutterstock.com/.

https://www.shutterstock.com/
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Table 8
Comparison of our method against state-of-the-art models on the Zamakona and Pictor datasets. Bold values indicate the best in each column; underlined values 
mark the best among existing methods. The last row in each section shows the difference between our results and the best alternative.
Detector Model Micro Macro Weighted Sample

P R F1 P R F1 P R F1 P R F1

YOLO Nath-a2 57.28 26.65 36.38 48.27 18.77 24.43 53.16 26.65 33.86 22.52 19.13 20.18
Nath-a3-vgg 57.51 29.33 38.85 62.68 25.69 35.27 59.20 29.33 38.35 22.62 19.64 20.58
Nath-a3-resnet 57.55 32.91 41.87 56.07 29.96 38.84 57.28 32.91 41.65 23.74 21.91 22.18
Nath-a3-xception 61.43 26.20 36.74 61.31 25.09 35.55 61.41 26.20 36.70 18.00 16.84 17.05

II Nath-a3-vgg 83.41 54.79 66.13 73.17 43.50 53.00 80.10 54.79 64.04 51.90 46.77 48.01
Nath-a3-resnet 76.08 56.92 65.12 67.07 49.85 57.18 75.72 56.92 64.98 48.56 47.00 46.47
Nath-a3-xception 80.62 44.60 57.43 75.84 41.71 53.82 80.51 44.60 57.40 38.15 35.65 35.99
Xiong et al. [7] 83.65 42.29 56.18 85.07 41.55 55.78 83.77 42.29 56.17 34.98 32.56 33.26

II Ours 90.29 72.00 80.12 87.71 70.95 78.43 90.42 72.00 80.15 57.25 57.82 57.10

Difference +6.64 +15.08 +13.99 +2.64 +21.10 +21.25 +6.65 +15.08 +15.17 +5.35 +10.82 +9.09

YOLO Nath-a2 76.81 72.85 74.77 69.86 72.15 70.83 76.88 72.85 74.79 42.93 42.93 42.82
Nath-a3-vgg 76.70 73.53 75.08 66.48 72.51 68.97 76.88 73.53 75.13 42.62 42.72 42.62
Nath-a3-resnet 72.63 73.88 73.25 54.25 79.65 61.18 74.17 73.88 73.74 42.31 42.82 42.48
Nath-a3-xception 74.25 68.38 71.19 51.19 62.90 53.77 76.12 68.38 71.84 39.44 39.85 39.54

II Nath-a3-vgg 83.15 76.29 79.57 65.11 73.92 67.96 83.82 76.29 79.77 46.86 46.75 46.75
Nath-a3-resnet 74.83 75.60 75.21 53.48 80.53 59.85 77.19 75.60 76.02 45.67 46.32 45.82
Nath-a3-xception 80.75 73.54 76.98 59.52 65.54 61.26 81.56 73.54 77.26 45.35 45.13 45.17
Xiong et al. [7] 78.17 61.51 68.85 67.32 66.35 65.77 78.52 61.51 68.89 33.46 33.46 33.40

II Ours 78.31 73.20 75.67 53.57 86.27 56.54 84.97 73.20 77.85 42.86 44.59 43.43

Difference −4.84 −3.09 −3.90 −13.75 +5.74 −11.42 +1.15 −3.09 −1.92 −4.00 −2.17 −3.33
ig. 11. Comparison of the results obtained when workers are close to each other and their bounding boxes overlap: our method (left), Nath’s (middle), and Xiong’s (right). For 
ach method: result for the whole scene (top), and enlargement of the selected area (bottom).

 Worker with no PPE  only helmet  only vest  helmet and vest.
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omparison of mean inference speed between Nath and Xiong models and our proposed 
ramework.
Model Seconds 
Nath-a2 0.124  
Nath-a3-vgg 0.706  
Nath-a3-resnet 0.852  
Nath-a3-xception 0.771  
Xiong 0.964  
Ours 0.878  

Inter-worker occlusions: In Fig.  11, a particularly difficult exam-
le of overlapping workers is illustrated. As shown in the enlarged 
reas, our method detects all four workers, including one who is 
argely occluded by two other workers. Furthermore, their helmets are 
roperly identified, as the three vests which are worn by the workers 
one of them is not wearing a vest). Nath’s method detects all workers, 
ut misses one of the helmets and wrongly assigns a vest to a worker 
ho is not wearing it (in fact, a vest is duplicated and assigned to two 
13 
orkers). Finally, Xiong’s is not capable of identifying the helmet and 
est of one of the workers and mistakenly assigns a vest to another one. 
his highlights the importance of the collision detection and duplicate 
emoval stage which we have included in our approach, since this phase 
voids assigning a PPE item to a worker who is not wearing it when 
hey are close to another worker who has it. Furthermore, the use of the 
ose estimation helps matching the item with the most probable owner. 
n Fig.  12, another example with overlapping bounding boxes is shown 
n the bottom subimages. Xiong’s approach identifies two workers, but 
isses the worker in the middle, who is occluded by the others, and 
ne helmet. Nath’s method identifies the three workers, but concludes 
hat only one of them is wearing a hat, which is wrong. However, our 
ethod detects the three workers and assigns a hat to one of them, a 
est to the second one, and hat and vest to the third one. In the enlarged 
rea shown on top, we can see how our method is the only one capable 
o detect the helmet of the worker in the center while the other methods 
iss some helmets (Nath) or even workers (Xiong).
Densely occupied areas: In Fig.  13, 18 workers are visible. Our 
ethod identifies all of them, although fails to detect some of the 
elmets (top subimages). Nath’s also detects all workers and performs 
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Fig. 12. Comparison of the results obtained when workers are close to each other and their bounding boxes overlap: our method (left), Nath’s (middle), and Xiong’s (right). For 
each method: result for the whole scene (middle row), and enlargement of the selected areas (top and bottom).

 Worker with no PPE  only helmet  only vest  helmet and vest.

Fig. 13. Comparison of the results obtained when numerous workers are visible in the scene and some areas are densely occupied: our method (left), Nath’s (middle), and Xiong’s 
(right). For each method: result for the whole scene (middle row), and enlargement of the selected areas (top and bottom).

 Worker with no PPE  only helmet  only vest  helmet and vest.
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Fig. 14. Comparison of the results obtained when workers are occluded by scaffolding or other workers: our method (left), Nath’s (middle), and Xiong’s (right). Whole scene (2nd 
row) and enlargements (1st, 3rd and 4th rows).

 Worker with no PPE  only helmet  only vest  helmet and vest.
Fig. 15. Comparison of the results obtained when workers are only partially visible: our method (left), Nath’s (middle), and Xiong’s (right). For each method: result for the whole 
scene (top), and enlargement of the selected area (bottom).

 No PPE  helmet only  vest only  helmet and vest.
 
 

 
 
 
 
 
 
 
 
 

better in detecting the helmets, but wrongly assigns a vest to one of
the workers (top subimage on the right). Finally, Xiong’s misses some
of the workers.

Occluding objects: In Fig.  14, occlusions between workers and
scaffolding play an important role. In this case, our method detects
all workers and only one helmet is missing (worker occluded by the
scaffolding on the third row). Nath’s approach detects all workers and
their helmets, while Xiong’s method misses two helmets. Although our
method detects other items, such as protective suits, they are not shown
here to compare the results with the other methods in this tests, which
focus on helmets and vests. In Fig.  15, a worker beyond a truck is not
completely visible. Our method detects him as well as his helmet and
15 
vest. Nath’s only detects the worker and his helmet, and Xiong’s does 
not detect the worker.

Challenging lighting conditions: Fig.  16 shows a comparison of 
the results in shadowed areas with occlusions. As observed, all three 
methods miss one of the workers in the top images, since only their 
helmet is visible. Our method identifies five workers (three on the top 
and two on the bottom subimages), and assigns a helmet to four of 
them and vest to one of them (reflective elements are considered in 
the category of vest). Nath’s method also detects five workers, assigns 
a helmet to those in the shadowed area and no vest is identified. Finally, 
Xiong’s method only detects two workers in the shadowed area. In Fig. 
17, low-light makes it difficult to identify all elements. Nath’s method 
fails to detect one of the helmets (worker on the left) and Xiong’s misses 
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Fig. 16. Comparison of the results obtained in shadowed areas and with occluded workers: our method (left), Nath’s (middle), and Xiong’s (right). For each method: result for 
the whole scene (middle row), and enlargement of selected areas (top and bottom).

 Worker with no PPE  only helmet  only vest  helmet and vest.
Fig. 17. Comparison of the results obtained under low-light conditions and overlapping workers: our method (left), Nath’s (middle), and Xiong’s (right). For each method: result 
for the whole scene (top), and enlargement of the selected area (bottom).

 Worker with no PPE  only helmet  only vest  helmet and vest.
Fig. 18. Examples illustrating the methods’ performance in untidy scenarios: our method (left), Nath’s (middle), and Xiong’s (right).
 Worker with no PPE  only helmet  only vest  helmet and vest.
a vest (right) and a helmet (middle), while our method properly detects 
all workers and PPE items.

Untidy scenarios: Fig.  18 includes and example of untidy and not 
well-organized scenario. All workers are properly detected by all three 
16 
methods. However, some differences are noticeable in the detection of 
the PPE. Xiong’s method wrongly assigns a helmet to one of the workers 
(top back), while it is not totally clear whether the closest worker wears 
a helmet or not. Non-compliance scenes: Fig.  19 (bottom) illustrates 
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Fig. 19. Comparison of the results when workers do not comply with safety regulations: our method (left), Nath’s (middle), and Xiong’s (right). For each method: result for the 
whole scene (middle), and enlargement of selected areas (top and bottom).

 Worker with no PPE  only helmet  only vest  helmet and vest.
how the methods can err on the side of excess. Although the worker 
on the right wears a vest but no helmet, Nath’s and Xiong’s methods 
assign him a helmet. This does not happen with our proposal, which 
correctly indicates that the worker is not wearing a hat.

Partial failures in extremely difficult scenes: In Fig.  20 we show 
an example in which all methods partially fail. One of the workers is not 
detected by our method (bottom row), as happens with Nath’s method, 
while Xiong’s detects him, but identifies a bin as another worker. In the 
enlarged area on top, Xiong’s cannot detect one of the workers, while 
Nath’s and ours miss some of the equipment. Finally, in the third row, 
one of the workers is not detected by any method and all of them fail 
to detect some of the attire.

5.5. Evaluation of components for the global framework

In order to evaluate how the global result is affected when one of the 
components is substituted, we have tested the method on both datasets 
using different combinations of detectors and pose estimators. Note that 
Yolov7 is kept as PPE detector in every combination.

The results presented in Table  10 demonstrate that InternImage 
consistently achieves the highest performance across all evaluation 
metrics, irrespective of the pose estimation model employed. This trend 
holds true for both the Zamakona and the Pictor dataset evaluated, 
underscoring InternImage’s robustness and effectiveness as a detec-
tion architecture. Compared to other detectors such as DDETR [37], 
Dino [38], and DDQ [39], InternImage achieves superior precision, 
recall, and F1 scores in most of the Micro, Macro, Weighted, and 
Sample-based evaluations.

Although the choice of pose estimation model introduces some 
variation in the results, these differences are relatively minor when 
contrasted with the impact of the detector. For instance, ViTPose 
17 
exhibits slightly higher recall values compared to Hrnet [40] and 
SimCC [41], but the overall performance differences are slight. This 
suggests that, although pose estimation models do play a role in the 
final outcomes, the influence of their choice is significantly less substan-
tial compared to the detector. A notable observation is that InternImage 
maintains its performance advantage even when paired with different 
pose estimation models, highlighting its consistent efficacy.

In conclusion, the findings from both the Zamakona dataset and the 
Pictor dataset reinforce the critical role of the detection architecture 
in determining overall performance. InternImage emerges as the key 
driver of accuracy improvement and, while pose estimation models 
contribute to the final result, substituting the pose estimator with a 
different model (among the tested estimators) does not affect the result 
as much as a change in the detector. These results emphasize the 
necessity of selecting a robust detector to achieve superior outcomes 
across various evaluation metrics.

5.6. Ablation study

In this section, we present a comprehensive ablation study to an-
alyze the framework and underscore the importance of the pose esti-
mation and duplicate removal modules. Table  11 provides a detailed 
summary of the results from our ablation study in terms of precision 
(P), recall (R), and F1-score (F1) across micro, macro, weighted, and 
sample averaging categories. The impact on performance of excluding 
the collision detection and duplicate removal (CDDR) and the pose 
estimation (Pose) components is illustrated, either individually or in 
combination.

With both CDDR and pose estimation enabled, the model achieves 
the highest performance across key metrics. The micro, macro, and 
weighted F1-scores reach 69.79, 63.29, and 70.61, respectively, outper-
forming all other tested configurations. Additionally, this configuration 
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Fig. 20. Results in extremely difficult scenes with low luminance, partially occluded workers, long distances: our method (left), Nath’s (middle), and Xiong’s (right). For each 
method: result for the whole scene (2nd row), and enlargement of selected areas (1st, 3rd and 4th rows).

 Worker with no PPE  only helmet  only vest  helmet and vest.
Table 10
Evaluation of the performance of different combinations of detectors and pose estimators on Zamakona dataset (top section) and Pictor dataset 
(bottom section).
 Person Pose Micro Macro Weighted Sample

 P R F1 P R F1 P R F1 P R F1  
 DDETR [37] ViTPose [36] 88.76 58.22 70.32 85.79 57.71 68.95 89.05 58.22 70.37 46.01 46.47 45.85 
 DINO [38] ViTPose [36] 90.13 56.44 69.41 87.47 55.82 68.12 90.32 56.44 69.44 45.20 45.74 45.16 
 DDQ [39] ViTPose [36] 90.13 66.64 76.62 87.96 66.18 75.51 90.26 66.64 76.65 53.67 53.79 53.33 
 II [42] Hrnet [40] 89.89 70.88 79.26 86.87 69.61 77.26 90.08 70.88 79.31 56.37 57.02 56.23 
 II [42] SimCC [41] 90.05 70.81 79.28 87.10 69.66 77.38 90.24 70.81 79.33 56.37 56.98 56.20 
 II [42] ViTPose [36] 90.29 72.00 80.12 87.71 70.95 78.43 90.42 72.00 80.15 57.25 57.82 57.10 
 DDETR [37] ViTPose [36] 79.38 62.19 69.74 55.60 80.63 55.01 86.32 62.19 71.37 36.84 38.15 37.28 
 DINO [38] ViTPose [36] 80.64 60.13 68.89 53.99 65.64 50.57 87.76 60.13 70.71 36.96 38.54 37.49 
 DDQ [39] ViTPose [36] 78.62 70.79 74.50 54.55 85.03 57.48 84.27 70.79 76.18 42.10 43.64 42.61 
 II [42] Hrnet [40] 78.30 73.19 75.66 53.57 86.26 56.53 84.96 73.19 77.85 42.95 44.68 43.52 
 II [42] SimCC [41] 78.02 73.19 75.53 53.39 86.26 56.46 84.61 73.19 77.70 42.86 44.58 43.42 
 II [42] ViTPose [36] 78.31 73.20 75.67 53.57 86.27 56.54 84.97 73.20 77.85 42.86 44.59 43.43 
achieves the highest precision across all aggregated metrics, with 71.50 
in the micro category, 64.20 in the macro category, 74.84 in weighted 
precision, and 50.16 in sample precision, underscoring the effectiveness 
of the full model setup.

Disabling the pose estimation strategy while keeping CDDR active 
results in a slight reduction in performance with regard to the whole 
model. Both precision and recall metrics are lower than using the whole 
framework in all types of combination. This results in a decrease of 
the F1-score, and underscores the significance of pose estimation in 
enhancing the model’s accuracy.

Conversely, when CDDR is disabled and only pose estimation is 
used, results show mixed impacts. Although recall is slightly improved, 
18 
precision decreases significantly with respect to the whole model. Com-
bining both, the overall performance remains below that of the com-
plete model, indicating that CDDR provides a valuable complementary 
effect.

Finally, when both CDDR and pose estimation are disabled, the 
model experiences a similar decline in performance with respect to the 
complete model. Although recall is improved with respect to other con-
figurations, the precision and the F1-score are lower than those of the 
complete model setup in all averages, except for the sample-F1-score, 
which is similar.

These results suggest that incorporating the CDDR and pose modules 
slightly reduces recall but significantly improves precision. In other 
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Table 11
Ablation study performed on two stages: collision detection and duplicate removal (CDDR), and pose estimation for PPE matching (Pose).
 CDDR Pose Micro Macro Weighted Sample

 P R F1 P R F1 P R F1 P R F1

 ✓ ✓ 71.50 68.15 69.79 64.20 63.99 63.29 74.84 68.15 70.61 50.16 55.09 50.57
 ✓ 7 70.10 66.81 68.42 63.13 63.02 62.28 73.26 66.81 69.17 48.05 53.78 48.67
 7 ✓ 66.90 70.47 68.64 60.27 65.91 62.45 68.85 70.47 69.19 48.68 57.28 50.44
 7 7 66.96 70.77 68.81 60.17 66.01 62.45 68.92 70.77 69.37 48.87 57.54 50.68
words, these components filter out some correct detections which do 
not meet specific conditions, but the remaining instances provide a 
higher confidence. In the context of health and safety compliance and 
monitoring, it is crucial to ensure that workers labeled as safe are 
indeed wearing the appropriate attire.

In summary, the ablation study clearly demonstrates that the com-
bination of CDDR and pose estimation provides the best overall per-
formance. Each component uniquely enhances different aspects of the 
model’s accuracy, and their synergistic effect is crucial for achieving 
the highest efficacy in PPE matching.

6. Conclusion

This paper presented an AI-based framework for automated PPE 
compliance monitoring in construction and industrial environments, 
aiming to enhance worker safety through deep learning techniques. The 
system integrates worker detection, pose estimation, and PPE recogni-
tion to address key challenges such as occlusions, shadows, and varying 
camera distances. Through extensive evaluations on different datasets 
— including the Zamakona and Pictor datasets, as well as additional 
construction site scenarios with diverse environmental and worker 
occupancy conditions — our framework demonstrates adaptability and 
robustness across different real-world settings.

The proposed approach incorporates a collision detection and du-
plicate removal module to handle complex cases involving overlapping 
or partially occluded workers, ensuring reliable PPE assignment. Ad-
ditionally, pose estimation enhances worker-PPE matching, improving 
assignment accuracy in crowded or visually ambiguous environments. 
The ablation study confirms that these components contribute to the 
overall performance of the system, indicating their importance for 
effective compliance monitoring.

A comprehensive quantitative and qualitative evaluation against 
state-of-the-art methods, including the Xiong and Nath (A2 and A3) 
models, demonstrates the effectiveness of our approach. Our frame-
work significantly outperforms Nath A2 and A3 (originally based on 
YOLOv3) in both datasets. To ensure a fair comparison, we employ 
an improved version of Nath A3, replacing YOLOv3 with InternImage 
for enhanced worker detection. While achieving comparable perfor-
mance to the best Nath models in the Pictor dataset, our method 
consistently surpasses all alternatives in the Zamakona dataset. Ad-
ditionally, compared to Xiong, our framework achieves higher recall 
and F1 scores, particularly improving PPE assignment in challenging 
conditions, demonstrating its robustness across different environments.

Qualitative assessments further confirm its generalization beyond 
training data, accurately identifying PPE compliance under varying 
lighting, occlusions, and worker densities. While detection performance 
is highest for helmets and vests, it decreases for smaller or less vis-
ible elements, such as gloves, particularly in long-distance scenarios. 
Nonetheless, the framework maintains a strong balance between preci-
sion and recall, making it a reliable solution for real-world applications.

Overall, this study presents a flexible framework for PPE compli-
ance monitoring, addressing gaps in existing techniques. The proposed 
approach aims to contribute to future AI-driven safety enhancements, 
such as real-time alert mechanisms, compliance reporting, and risk 
analytics, thereby supporting automated safety monitoring in high-risk 
industrial settings.
19 
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