Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136847
Título: Comparative Analysis of Despeckling Filters Based on Generative Artificial Intelligence Trained with Actual Synthetic Aperture Radar Imagery
Autores/as: Cardona Mesa, Ahmed Alejandro 
Vasquez Salazar, Ruben Dario 
Travieso-González, Carlos M. 
Gomez, Luis 
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Synthetic-Aperture Radar (Sar)
Remote Sensing
Deep Learning
Despeckling
Generative Artificial Intelligence
Fecha de publicación: 2025
Publicación seriada: Remote Sensing 
Resumen: The speckle is a granular undesired pattern present in Synthetic-Aperture Radar (SAR) imagery. Despeckling has been an active field of research during the last decades, with approaches from local filters to non-local filters that calculate the new value of a pixel according to characteristics of other pixels that are not close, the more advanced paradigms based on deep learning, and the newer based on generative artificial intelligence. For the latter, it is necessary to have a large enough labeled dataset for training and validation. In this study, we propose using a dataset designed entirely from actual SAR imagery, calculated by multitemporal fusion operations to generate a ground truth reference, which will yield the models to be trained with the actual speckle patterns in the noisy images. Then, a comparative analysis of the impacts of including the generative capacity in the models is performed through visual and quantitative assessment. From the findings, it is concluded that the use of generative artificial intelligence with actual speckle exhibits notable efficiency compared to other approaches, which makes this a promising path for research in the context of SAR imagery.
URI: http://hdl.handle.net/10553/136847
DOI: 10.3390/rs17050828
Fuente: Remote Sensing,v. 17 (5), (Marzo 2025)
Colección:Artículos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.