Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136847
Campo DC Valoridioma
dc.contributor.authorCardona Mesa, Ahmed Alejandroen_US
dc.contributor.authorVasquez Salazar, Ruben Darioen_US
dc.contributor.authorTravieso-González, Carlos M.en_US
dc.contributor.authorGomez, Luisen_US
dc.date.accessioned2025-04-01T09:58:42Z-
dc.date.available2025-04-01T09:58:42Z-
dc.date.issued2025en_US
dc.identifier.otherWoS-
dc.identifier.urihttp://hdl.handle.net/10553/136847-
dc.description.abstractThe speckle is a granular undesired pattern present in Synthetic-Aperture Radar (SAR) imagery. Despeckling has been an active field of research during the last decades, with approaches from local filters to non-local filters that calculate the new value of a pixel according to characteristics of other pixels that are not close, the more advanced paradigms based on deep learning, and the newer based on generative artificial intelligence. For the latter, it is necessary to have a large enough labeled dataset for training and validation. In this study, we propose using a dataset designed entirely from actual SAR imagery, calculated by multitemporal fusion operations to generate a ground truth reference, which will yield the models to be trained with the actual speckle patterns in the noisy images. Then, a comparative analysis of the impacts of including the generative capacity in the models is performed through visual and quantitative assessment. From the findings, it is concluded that the use of generative artificial intelligence with actual speckle exhibits notable efficiency compared to other approaches, which makes this a promising path for research in the context of SAR imagery.en_US
dc.languageengen_US
dc.relation.ispartofRemote Sensingen_US
dc.sourceRemote Sensing,v. 17 (5), (Marzo 2025)en_US
dc.subject33 Ciencias tecnológicasen_US
dc.subject.otherSynthetic-Aperture Radar (Sar)en_US
dc.subject.otherRemote Sensingen_US
dc.subject.otherDeep Learningen_US
dc.subject.otherDespecklingen_US
dc.subject.otherGenerative Artificial Intelligenceen_US
dc.titleComparative Analysis of Despeckling Filters Based on Generative Artificial Intelligence Trained with Actual Synthetic Aperture Radar Imageryen_US
dc.typeinfo:eu-repo/semantics/Articleen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/rs17050828en_US
dc.identifier.isi001442453900001-
dc.identifier.eissn2072-4292-
dc.identifier.issue5-
dc.relation.volume17en_US
dc.investigacionIngeniería y Arquitecturaen_US
dc.type2Artículoen_US
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages24en_US
dc.utils.revisionen_US
dc.contributor.wosstandardWOS:Cardona-Mesa, AA-
dc.contributor.wosstandardWOS:Vásquez-Salazar, RD-
dc.contributor.wosstandardWOS:Travieso-González, CM-
dc.contributor.wosstandardWOS:Gómez, L-
dc.date.coverdateMarzo 2025en_US
dc.identifier.ulpgcen_US
dc.contributor.buulpgcBU-TELen_US
item.fulltextSin texto completo-
item.grantfulltextnone-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.orcid0000-0003-0667-2302-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameCardona Mesa, Ahmed Alejandro-
crisitem.author.fullNameVasquez Salazar, Ruben Dario-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNameGómez Déniz, Luis-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.