Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/136847
Campo DC Valoridioma
dc.contributor.authorCardona Mesa, Ahmed Alejandro-
dc.contributor.authorVasquez Salazar, Ruben Dario-
dc.contributor.authorTravieso-González, Carlos M.-
dc.contributor.authorGomez, Luis-
dc.date.accessioned2025-04-01T09:58:42Z-
dc.date.available2025-04-01T09:58:42Z-
dc.date.issued2025-
dc.identifier.otherWoS-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/136847-
dc.description.abstractThe speckle is a granular undesired pattern present in Synthetic-Aperture Radar (SAR) imagery. Despeckling has been an active field of research during the last decades, with approaches from local filters to non-local filters that calculate the new value of a pixel according to characteristics of other pixels that are not close, the more advanced paradigms based on deep learning, and the newer based on generative artificial intelligence. For the latter, it is necessary to have a large enough labeled dataset for training and validation. In this study, we propose using a dataset designed entirely from actual SAR imagery, calculated by multitemporal fusion operations to generate a ground truth reference, which will yield the models to be trained with the actual speckle patterns in the noisy images. Then, a comparative analysis of the impacts of including the generative capacity in the models is performed through visual and quantitative assessment. From the findings, it is concluded that the use of generative artificial intelligence with actual speckle exhibits notable efficiency compared to other approaches, which makes this a promising path for research in the context of SAR imagery.-
dc.languageeng-
dc.relation.ispartofRemote Sensing-
dc.sourceRemote Sensing,v. 17 (5), (Marzo 2025)-
dc.subject33 Ciencias tecnológicas-
dc.subject.otherSynthetic-Aperture Radar (Sar)-
dc.subject.otherRemote Sensing-
dc.subject.otherDeep Learning-
dc.subject.otherDespeckling-
dc.subject.otherGenerative Artificial Intelligence-
dc.titleComparative Analysis of Despeckling Filters Based on Generative Artificial Intelligence Trained with Actual Synthetic Aperture Radar Imagery-
dc.typeinfo:eu-repo/semantics/Article-
dc.typeArticle-
dc.identifier.doi10.3390/rs17050828-
dc.identifier.scopus86000721247-
dc.identifier.isi001442453900001-
dc.contributor.orcid0000-0001-5263-2569-
dc.contributor.orcid0000-0002-1690-8393-
dc.contributor.orcid0000-0002-4621-2768-
dc.contributor.orcid0000-0003-0667-2302-
dc.contributor.authorscopusid58544725400-
dc.contributor.authorscopusid58544220200-
dc.contributor.authorscopusid57219115631-
dc.contributor.authorscopusid56789548300-
dc.identifier.eissn2072-4292-
dc.identifier.issue5-
dc.relation.volume17-
dc.investigacionIngeniería y Arquitectura-
dc.type2Artículo-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.contributor.daisngidNo ID-
dc.description.numberofpages24-
dc.utils.revision-
dc.contributor.wosstandardWOS:Cardona-Mesa, AA-
dc.contributor.wosstandardWOS:Vásquez-Salazar, RD-
dc.contributor.wosstandardWOS:Travieso-González, CM-
dc.contributor.wosstandardWOS:Gómez, L-
dc.date.coverdateMarzo 2025-
dc.identifier.ulpgc-
dc.contributor.buulpgcBU-TEL-
dc.description.sjr1,091-
dc.description.jcr4,2-
dc.description.sjrqQ1-
dc.description.jcrqQ1-
dc.description.scieSCIE-
dc.description.miaricds10,6-
item.grantfulltextnone-
item.fulltextSin texto completo-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptGIR IDeTIC: División de Procesado Digital de Señales-
crisitem.author.deptIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.deptDepartamento de Señales y Comunicaciones-
crisitem.author.deptGIR IUCES: Centro de Tecnologías de la Imagen-
crisitem.author.deptIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.deptDepartamento de Ingeniería Electrónica y Automática-
crisitem.author.orcid0000-0002-4621-2768-
crisitem.author.orcid0000-0003-0667-2302-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.parentorgIU para el Desarrollo Tecnológico y la Innovación-
crisitem.author.parentorgIU de Cibernética, Empresa y Sociedad (IUCES)-
crisitem.author.fullNameCardona Mesa, Ahmed Alejandro-
crisitem.author.fullNameVázquez Salazar, Rubén Darío-
crisitem.author.fullNameTravieso González, Carlos Manuel-
crisitem.author.fullNameGómez Déniz, Luis-
Colección:Artículos
Vista resumida

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.