Identificador persistente para citar o vincular este elemento: http://hdl.handle.net/10553/136663
Título: Gran canaria vegetation segmentation dataset from multi-year aerial imagery for environmental monitoring and conservation
Autores/as: Salas Cáceres, José Ignacio 
Balia, Riccardo
Salas Pascual, Marcos 
Lorenzo Navarro, Javier 
Castrillón Santana, Modesto 
Clasificación UNESCO: 24 Ciencias de la vida
Palabras clave: Computer Vision
Ecology
Remote Sensing
Semantic Segmentation
Vegetation Mapping
Fecha de publicación: 2025
Publicación seriada: Data in Brief 
Resumen: Vegetation maps are an essential tool for territorial planning, enabling the identification of areas requiring protection and facilitating the study of key ecosystem dynamics such as their evolution over time and the threats they face. These aspects are especially critical in island territories, where their fragmented nature and isolation from the mainland pose significant challenges to the development of such documentation. Traditionally, these maps have relied on local experts, requiring extensive fieldwork, significant time and financial resources. To address these challenges, a novel dataset focused on Gran Canaria (Canary Islands, Spain) is presented, designed to allow researchers to develop and test deep learning models that automatically generate vegetation maps using computer vision techniques. This dataset is unique in the field of aerial image-based semantic segmentation, as it provides detailed annotations for 20 well-defined vegetation communities, going beyond the broad classifications commonly found in existing datasets (e.g., forests or grasslands). Additionally, an alternative version of the dataset includes five non-vegetal classes, such as water bodies, roads, or buildings to support more visually comprehensive segmentation tasks.
URI: http://hdl.handle.net/10553/136663
ISSN: 2352-3409
DOI: 10.1016/j.dib.2025.111419
Fuente: Data in Brief [EISSN 2352-3409], v. 59, (Abril 2025)
Colección:Artículos
Unknown (1,45 MB)
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.